Элементы Элементы большой науки

Поставить закладку

Напишите нам

Карта сайта

Популярные синопсисы

По статье:
Ю. Ф. Богданов
Эволюция мейоза одноклеточных и многоклеточных эукариот. Ароморфоз на клеточном уровне

Том 69, 2008. № 2, Март-Апрель, Стр. 102–117

Резюме. Abstract

Александр Марков

На пути к разгадке тайны мейоза

Мейоз, предшествующий образованию пыльцевых зерен у лука (слева направо и сверху вниз). Фото с сайта http://laurent.penet.free.fr
Мейоз, предшествующий образованию пыльцевых зерен у лука (слева направо и сверху вниз). Фото с сайта http://laurent.penet.free.fr

Появление мейоза – особого варианта клеточного деления, в результате которого число хромосом сокращается вдвое – было одним из важнейших эволюционных «достижений» первых эукариот. Механизм мейоза сложился из комбинации готовых «блоков»: механизмов митоза, рекомбинации и репарации ДНК. Ключевым событием стало формирование синаптонемного комплекса – особой белковой структуры, обеспечивающей попарное соединение и точное «выравнивание» хромосом.

Появление эукариотической клетки было важнейшим эволюционным преобразованием (ароморфозом) в истории земной жизни (см. обзор «Происхождение эукариот» ). Одним из главных «достижений» древних эукариотических организмов стало возникновение настоящего полового процесса, то есть слияния двух гаплоидных (содержащих одинарный набор хромосом) клеток – гамет в диплоидную (содержащую двойной набор хромосом) клетку – зиготу.

Чтобы жизненный цикл эукариот, обладающих половым процессом, мог продолжаться, должен был развиться механизм, посредством которого из диплоидных клеток снова могли образовываться гаплоидные. Таким механизмом стал мейоз – особый вид клеточного деления, при котором число хромосом в дочерних клетках уменьшается вдвое по сравнению с родительской клеткой.

В статье Ю.Ф.Богданова, крупнейшего специалиста по эволюции мейоза, рассматриваются современные представления о происхождении механизмов мейотического деления у эукариот.

Общепризнано, что мейоз произошел из митоза – «обычного» клеточного деления эукариот, в результате которого число хромосом остается прежним. Происхождение митоза само по себе было замечательным ароморфозом. Мейоз, по сути дела, является модифицированной версией митоза.

Мейоз представляет собой два последовательных деления исходной диплоидной клетки и отличается от митоза только первым своим делением (см. схему). Отличие состоит в том, что хромосомы вступают в метафазу, соединенные попарно гомолог с гомологом (гомологичными называют хромосомы, содержащие одни и те же гены/локусы и полученные одна от отца, другая от матери). В метафазе I мейоза центромеры каждой из хромосом «униполярны», т.е. соединены белковыми нитями только с одним из двух полюсов веретена деления .

Схема мейоза
Схема мейоза. На рисунке показан мейоз клетки, у которой число хромосом в одинарном (гаплоидном) наборе равно двум. Диплоидная клетка, соответственно, имеет 4 хромосомы (две получены от отца – например, синие; две – от матери – допустим, белые). Перед началом деления (митоза или мейоза) каждая хромосома удваивается. Теперь она состоит из двух сестринских хроматид. В профазе I мейоза гомологичные хромосомы объединяются попарно и обмениваются участками (кроссинговер). В метафазе I мейоза гомологичные хромосомы по-прежнему сгруппированы попарно. В нашем случае получилось 2 пары, в каждой по две гомологичные хромосомы и по 4 хроматиды. Затем гомологичные хромосомы расходятся к полюсам клетки (анафаза I), и, наконец, исходная диплоидная клетка (с 4 хромосомами) разделяется на две гаплоидные (по 2 хромосомы в каждой). Все хромосомы по-прежнему состоят из двух хроматид. Во время второго деления мейоза каждая из этих гаплоидных клеток делится еще раз. При этом в метафазе II хромосомы уже не группируются попарно (да им теперь и не с кем – нет подходящих пар-гомологов), а стоят поодиночке. В анафазе II сестринские хроматиды отделяются друг от друга и расходятся к полюсам. В итоге получается 4 гаплоидные клетки, в каждой по 2 хромосомы, каждая хромосома состоит из одной хроматиды. Второе деление мейоза, по сути дела, мало чем отличается от «обычного» клеточного деления – митоза. Изображение с сайта www.svinki.ru.

В ходе митоза (а также в ходе второго деления мейоза) хромосомы вступают в метафазу поодиночке, и нити веретена деления присоединяются к каждой хромосоме с двух сторон.

Именно благодаря указанным особенностям первого деления мейоза и обеспечивается уменьшение числа хромосом: к полюсам клетки расходятся не сестринские хроматиды, а гомологичные хромосомы, по одной из каждой пары (см. схему).

Эти ключевые особенности первого деления мейоза развились на основе одного и того же ароморфоза – возникновения так называемого синаптонемного комплекса (СК).

Механизм мейоза был «собран» из готовых блоков (как это часто бывает в эволюции) – разумеется, с некоторыми модификациями и новшествами.

Одним из этих исходных блоков стал уже имевшийся к тому времени у эукариот механизм митоза, другим – механизм репарации (починки повреждений) ДНК, основанный на гомологичной рекомбинации (см.: Глазер В.М. Гомологичная генетическая рекомбинация ). Суть процесса в том, что поврежденный участок одной молекулы ДНК заменяется его неповрежденной копией, взятой из другой (гомологичной) молекулы ДНК.

Чтобы «развести» гомологичные хромосомы к разным полюсам клетки, в ходе мейоза используется веретено деления, «унаследованное» от митоза. Но чтобы распределение хромосом по дочерним клеткам прошло без ошибок, гомологичные хромосомы необходимо сначала сгруппировать попарно. Для этого используется механизм гомологичной рекомбинации, точнее, одна из деталей этого механизма – образование так называемого соединения Холлидея.

Упрощенная схема одного из вариантов гомологичной рекомбинации
Упрощенная схема одного из вариантов гомологичной рекомбинации (обмена участками между гомологичными молекулами ДНК) с образованием соединения Холлидея. Показаны две двухцепочечные молекулы ДНК. Тут важно не перепутать: каждая молекула ДНК состоит из двух параллельных цепей нуклеотидов (двойная спираль); в состав одной хроматиды входит одна молекула ДНК; каждая хромосома (вплоть до анафазы II) состоит из двух хроматид. Соответственно, каждая пара гомологичных хромосом (например, в метафазе I) состоит из ДВУХ хромосом, ЧЕТЫРЕХ хроматид, ЧЕТЫРЕХ молекул ДНК, ВОСЬМИ нуклеотидных цепочек. Рекомбинация происходит между хроматидами отцовской и материнской хромосом. На этом рисунке показана рекомбинация у одного из вирусов, у эукариот во время мейоза все несколько иначе и сложнее

Починка разрывов ДНК – одна из основ мейоза

Механизмы репарации и рекомбинации ДНК – очень древние, они должны были возникнуть еще на заре жизни.

Жизненный цикл древних эукариот (как и многих прокариот), вероятно, состоял из двух фаз и двух соответствующих типов метаболизма: 1) вегетативная фаза (условия благоприятны, клетки размножаются митозом); 2) фаза споруляции (условия стали неблагоприятными, клетки превращаются в споры). У низших эукариот – например, у дрожжей, - перед споруляцией происходит мейоз, и из получившихся гаплоидных клеток образуются споры.

Становление мейоза в ходе эволюции, так же как и сам мейоз в жизненном цикле современных организмов, начинается с репарации повреждений (разрывов) ДНК. Разрывы эти в начале мейоза возникают не сами собой – их создает специальный фермент, эндонуклеаза SPO11. Этот фермент является модификацией другого белка – ДНК-топоизомеразы VI, унаследованной эукариотами от своих прокариотических предков – архей.

Клетка начинает «чинить» разорванные молекулы ДНК при помощи древнего механизма гомологичной рекомбинации. А для этого нужно объединить попарно гомологичные молекулы ДНК (чтобы использовать неповрежденные участки одной молекулы в качестве «матрицы» для исправления повреждений в другой молекуле). На этом и основано попарное объединение хромосом в профазе I мейоза.

Белковые оси хромосом

Эукариотический геном значительно больше прокариотического и содержит больше «избыточной» ДНК (различных некодирующих последовательностей, мобильных генетических элементов и др.) Большие размеры генома стимулировали «распадение» его на отдельные хромосомы (линейные, в отличие от единственной кольцевой хромосомы прокариот). Как следствие, «оказалась полезной новация в структуре хромосом – белковые оси, к которым стали крепиться петли гигантской молекулы ДНК – эукариотической хромосомы».

В клетках эукариот, делящихся путем митоза, сестринские хроматиды (образовавшиеся в результате репликации исходной молекулы ДНК) соединены посредством белков-когезинов. Чтобы хроматиды могли разойтись к полюсам клетки (в анафазе митоза), когезины должны гидролизоваться и исчезнуть из межхроматидного пространства.

Один из когезинов (Rec8) «оказался подходящим субстратом для наслоения на него других мейоз-специфичных белков», из которых в начале мейоза строятся более сложные белковые оси, или «линейные элементы», к которым ДНК крепится петлями, приобретая вид «ершика». Каждая петля содержит несколько тысяч пар нуклеотидов и крепится к линейному элементу только в одном месте, «кнопочно». Такая организация хромосомы позволяет хромосомным локусам легче находить гомологичные им локусы в хромосоме-партнере. Так обстоит дело у некоторых низших эукариот, у которых нет «классического» мейоза, характерного для более высокоорганизованных форм.

Синаптонемные комплексы. Ароморфоз.

У эукариот с классическим мейозом «бывшие линейные элементы хромосом соединяются попарно с помощью белковой «застежки-молнии» в двухосевую структуру, именуемую синаптонемным комплексом (СК)». Это обеспечивает тесное соединение гомологичных хромосом. Ю.Ф.Богданов считает появление СК важным ароморфозом. СК существует ограниченное время в течение профазы I мейоза и затем распадается. СК обнаружен у многих сотен видов – от одноклеточных водорослей, грибов и протистов до многоклеточных. Предполагается несколько возможных функций СК:

1) Организация профазной мейотической хромосомы. Благодаря СК возникает билатеральная организация пары соединившихся гомологичных хромосом. Петли хроматина располагаются по обе стороны от СК. Это позволяет точно сопоставить петли хроматина в трехмерном пространстве клеточного ядра. «По-видимому, это простейший, если не единственный, способ внести порядок и точность в процесс взаимного узнавания локусов гомологичных хромосом и обеспечить достаточную точность (гомологию) рекомбинации в мейозе.»

2) СК не только соединяет гомологичные хромосомы, но и не дает им «склеиться», удерживая их на расстоянии 70-120 нм друг от друга. В конце профазы I (стадия диплотены) СК распадается во всех локусах, кроме локусов хиазм (перекрещивания хроматид). Гомологичные хромосомы, взаимно оттолкнувшиеся во всех локусах, кроме локусов хиазм, выстраиваются на экваторе веретена деления в метафазе I. Они готовы разойтись к полюсам, как только освободятся от хиазм.

3) СК необходим для формирования хиазм. СК также не позволяет хиазмам располагаться слишком близко друг от друга. Иными словами, благодаря СК хроматиды могут «рваться» и обмениваться участками лишь в ограниченном количестве мест. Ю.Ф.Богданов оценивает это как положительное явление, поскольку «чрезмерная частота кроссинговера – не столько «благо» комбинаторики, сколько угроза стабильности адаптационно выгодных фенотипов».

Происхождение белков СК

У разных групп эукариот СК строится по единому «плану», но при этом используются совершенно разные (структурно негомологичные) белки. Это похоже на постройку домов по сходному плану (стены, крыша, окна), но из совершенно разных материалов. Материал не важен – «важно, чтобы СК выравнивал параллельно лежащие гомологичные хромосомы, сохранял между ними пространство, в котором происходит рекомбинация ДНК, и сохранял бы эти условия столь долго, сколько необходимо для завершения рекомбинации и формирования хиазм».

Сравнительный анализ структуры белков СК показал, что они возникли независимо у предков современных эукариот, давших начало разным крупным таксонам (растений, грибов, животных).

Ю.Ф.Богданов приводит убедительные доводы и экспериментальные факты, свидетельствующие о том, что структуры СК формируются путем самосборки из белковых молекул, подобно многим другим сложным молекулярным комплексам. Автор отмечает, что «самоорганизующиеся структуры могут состоять из разных белковых субъединиц и нуклеиновых кислот, как это наблюдается в отношении вирусов и рибосом». Важно, что белки, сходные по размерам и трехмерной организации, могут служить компонентами одинаковых структур у далеких друг от друга организмов даже в тех случаях, когда первичная структура (аминокислотная последовательность) этих белков сильно различается.

Почему в первом делении мейоза сестринские хроматиды не расходятся?

В отличие от митоза и второго деления мейоза, в первом делении мейоза сестринские хроматиды остаются «склееными», потому что ген CDC31, продукт которого нужен для гидролиза когезинов, в мейозе I оказывается временно отключен продуктом другого гена – SGO1 (у дрожжей S. cerevisae). Во время второго деления мейоза ген SGO1 не функционирует, «запрет» на работу CDC31, снимается, и сестринские хроматиды разделяются. У дрозофилы вместо SGO1 действует неродственный ему ген mei-S332. Это еще один важный пример выполнения одной и той же фундаментальной клеточной функции на основе разных по первичной структуре белков.

Итак, причина нерасхождения хроматид в мейозе I – сохранение соединяющей их когезиновой оси. В результате после первого деления мейоза «программа» клеточного деления остается как бы «не выполненной». Эта программа – в основе которой лежит древняя программа митоза – после завершения мейоза I, не останавливаясь, продолжает работать (хроматиды не разошлись, когезиновые оси не гидролизовались – значит, нужно делиться дальше). И поэтому клетки сразу же, без интерфазы и без синтеза ДНК, вступают в новое деление (мейоз II), идущее уже в точности по схеме классического митоза.

В заключительнй части статьи Ю.Ф.Богданов рассматривает ряд интересных случаев отхода некоторых организмов от схемы «классического» мейоза. Например, у самцов дрозофил (в отличие от самок) СК не образуется, и мейоз идет по примитивной схеме, характерной для некоторых архаичных эукариот (дрожжи S. pombe). Таким образом «генетическая программа» примитивного мейоза у высших организмов не исчезает (вероятно, она просто входит в состав более сложной программы «классического» мейоза) и может вновь оказаться востребованной.

См. также:

Ю. Ф. Богданов. Белковые механизмы мейоза (популярная статья в журнале «Природа»).

С фактами и теориями, касающимися происхождения мейоза, можно ознакомиться в статьях Ю.Ф.Богданова и его коллег:

Yu.F.Bogdanov. 2003. Variation and Evolution of Meiosis .

Ю.Ф.Богданов, С.Я.Дадашев, Т.М.Гришаева. Сравнительная геномика и протеомика дрозофилы, нематоды Бреннера и арабидопсиса. Идентификация функционально сходных генов и белков синапсиса мейотических хромосом .


Комментировать
Еще по темам: Генетика, Молекулярная биология, Цитология
Ш. Р. Абдуллин, В. Б. Багмет
Миксотрофия цианобактерий и водорослей в условиях пещер
Стр. 54–62
Резюме. Abstract
Синопсис: Диета цианобактерий и водорослей в условиях пещер
Л. А. Лавренченко, Н. Ш. Булатова
Роль гибридных зон в формообразовании (на примере хромосомных рас домовой мыши Mus domesticus и обыкновенной бурозубки Sorex araneus)
Стр. 280–294
Резюме. Abstract
О. В. Паюшича
Локализация и функции мезенхимных стромальных клеток in vivo
Стр. 161–172
Резюме. Abstract
Синопсис: Локализация и функции мезенхимных стромальных клеток in vivo
О. Ю. Конева
В популяции моллюсков Lymnaea stagnalis из радиационно-неблагополучною региона обнаружено двукратное увеличение содержания ДНК в гемоцитах
Стр. 466–477
Резюме. Abstract
Синопсис: «Кометы» и улитки могут указывать на повышение радиационной нагрузки
Н. А. Проворов, И. А. Тихонович
Надвидовые генетические системы
Стр. 247–260
Резюме. Abstract
Синопсис: Склонность к «незаконному браку»* передается по наследству
Ю. В. Люпина, А. Ш. Орлова, Н. Г. Горностаев, Я. Д. Карпова, В. С. Михайлов, Н. П. Шарова
Пластичность нервной и иммунной систем у различных организмов: роль протеасом
Стр. 3–24
Резюме. Abstract
Синопсис: Молекулярная система смерти готовит посредников
Н. Я. Вайсман
Неожиданные эффекты генов-супрессоров опухоли в онтогенезе дрозофилы
Стр. 83–98
Резюме. Abstract
Н .В. Полуконова, А. Г. Демин, Н. С. Мюге
Молекулярные критерии в систематике насекомых: диапазон изменчивости штрихкодового гена COI как таксономический критерий рода, трибы и подсемейства, на примере комаров-звонцов Chironominae и Orthocladiinae (Chironomidae, Diptera)
Стр. 66–76
Резюме. Abstract
М. И. Чепраков, С. Б. Ракитин
Взаимосвязь между уровнем хромосомных аберраций и демографическими параметрами
Стр. 253–258
Резюме. Abstract
Синопсис: Взаимосвязь между уровнем хромосомных аберраций и демографическими параметрами
Л. Б. Попова, Д. А. Ворнов, И. А. Косевич, Ю. В. Панчин
Щелевые контакты в эмбрионе актинии Nematostella vectensis
Стр. 83–87
Резюме. Abstract
Синопсис: Универсальна ли связь «в контакте» среди клеток животных?
Н. Ю. Феоктистова, О. Ф. Чернова, И. Г. Мещерский
Декоративные формы хомячков рода Phodopus (Mammalia, Cricetinae) - анализ распространения генетических линий и особенности изменения волосяного покрова
Стр. 138–154
Резюме. Abstract
Синопсис: Зачем нам знать, откуда взялись домашние хомячки?
К. К. Баскаев, А. А. Буздин
Эволюционно недавние вставки мобильных элементов и их вклад в структуру генома человека
Стр. 3–20
Резюме. Abstract
Синопсис: Мобильные генетические элементы – один из факторов, делающих нас людьми
И. С. Мажейка, О. А. Кудрявцева, О. В. Камзолкина
Контроль продолжительности жизни у грибов и других организмов. Концепция весов
Стр. 243–268
Резюме. Abstract
Синопсис: Старение и антистарение - грузы на весах жизни
A. П. Ткачук, М. В. Ким, В. Ю. Савицкий, М. Ю. Савицкий
Перспективы использования трансгенных насекомых в программах биоконтроля
Стр. 93–110
Резюме. Abstract
Синопсис: Генетически модифицированные насекомые победят вредителей и спасут человечество от болезней
А. В. Марков
Происхождение и эволюция человека. Обзор достижений палеоантропологии, сравнительной генетики и эволюционной психологии
Стр. 359–371
Резюме. Abstract
Синопсис: Происхождение и эволюция человека
Н. Я. Вайсман, Ю. К. Илинский, М. Д. Голубовский
Популяционно-генетический анализ продолжительности жизни Drosophila melanogaster. сходные эффекты эндосимбионта Wolbachia и опухолевого супрессора Igl в условиях температурного стресса
Стр. 438–447
Резюме. Abstract
Синопсис: Паразитическая бактерия продлевает жизнь своим хозяевам
B. С. Шнеер
ДНК-штрихкодирование видов животных и растений - способ их молекулярной идентификации и изучения биоразнообразия
Стр. 296–315
Резюме. Abstract
Синопсис: ДНК-штрихкодирование – штангенциркуль биологической систематики
B. И. Самойлов, Ю. М. Васильев
Механизмы социального поведения тканевых клеток позвоночных: культуральные модели
Стр. 239–244
Резюме. Abstract
Синопсис: Социальная жизнь в «государстве клеток»
Е. С. Гаврюшина
Кооперация между белками пикорнавирусов для преодоления защитных механизмов клетки
Стр. 245–248
Резюме. Abstract
Синопсис: Как вирусы подавляют защитные механизмы клетки
А. Э. Милованов, А. П. Симчук
Параметры генетического разнообразия и подразделенности Colias crocea Fourc. и С. erate Esp. (Lepidoptera, Pieridae) в зоне синтопного обитания в Крыму по данным аллозимного и RAPD-PCR-анализа
Стр. 434–440
Резюме. Abstract
Синопсис: Бабочки-желтушки сбивают с толку энтомологов
A. В. Бабоша
Лектины и проблема распознавания фитопатогенов растением-хозяином
Стр. 379–396
Резюме. Abstract
Синопсис: Лектины заменяют растениям иммунную систему
Л. Н. Нефедова, А. И. Ким
Эволюция от ретротранспозонов к ретровирусам: источник и происхождение гена env
Стр. 459–467
Резюме. Abstract
Синопсис: Данные сравнительной геномики проливают свет на происхождение ретровирусов
Л. А. Васильева, О. В. Антоненко, О. В. Выхристюк
Отклик геномного рисунка МГЭ412 на отбор по количественному признаку у Drosophila melanogaster
Стр. 341–349
Резюме. Abstract
Синопсис: Эволюционная роль мобильных генетических элементов остается загадочной
Ф. М. Шакирова, М. В. Безрукова
Современные представления о предполагаемых функциях лектинов растений
Стр. 109–125
Резюме. Abstract
Синопсис: Лектины – белки, специализирующиеся на распознавании углеводов
Н. П. Гончаров, С. А. Глушков, В. К. Шумный
Доместикация злаков Старого Света: поиск новых подходов для решения старой проблемы
Стр. 126–148
Резюме. Abstract
Синопсис: Происхождение культурных растений: новый взгляд на старые проблемы.
К. И. Чернышев, К. А. Трувеллер
Количественная оценка генетической дифференциации амфибий разного таксономического ранга по спектрам общих белков и неспецифических эстераз
Стр. 149–160
Резюме. Abstract
А. Г. Бойко
Дифференцировка клеток радиальной глии в астроциты - вероятный механизм старения млекопитающих
Стр. 35–51
Резюме. Abstract
Синопсис: Старение организма начинается с мозга
Н. А. Проворов, Е. А. Долгих
Метаболическая интеграция организмов в системах симбиоза
Стр. 403–422
Резюме. Abstract
Синопсис: От биохимического сотрудничества – к общему геному
А. И. Кутмин
Геномный импринтинг: случай наследования гематокрита, радиочувствительности и антиоксидантного статуса человека, а также веса новорожденных млекопитающих
Стр. 361–375
Резюме. Abstract
Синопсис: Почему некоторые наследственные признаки зависят от возраста родителей?
В. Г. Ладыгин. Г. Н. Ширшикова
Современные представления о функциональной роли каротиноидов в хлоропластах эукариот
Стр. 163–189
Резюме. Abstract
Синопсис: Каротиноиды — универсальные молекулярные устройства для работы со светом
В. В. Ефремов
Правило «один мигрант на поколение» и генетическая дифференциация в подразделенной популяции
Стр. 198–205
Резюме. Abstract
П. Ю. Жмылев
Эволюция длительности жизни растений: факты и гипотезы
Стр. 107–119
Резюме. Abstract
Синопсис: Как стареют растения
А. П. Симчук, А. В. Ивашов
Эколого-генетические аспекты дифференциации трофических предпочтений некоторых насекомых-филлофагов в микросообществах дуба
Стр. 53–61
Резюме. Abstract
Н. А. Проворов
Молекулярные основы симбиогенной эволюции: от свободноживущих бактерий к органеллам
Стр. 371–388
Резюме. Abstract
Ю.Т.Дьяков
На пути к общей теории иммунитета
Стр. 451–458
Резюме. Abstract
Е. В. Самбук
Генетические механизмы реализации закона лимитирующего фактора у дрожжей Saccharomyces cerevisiae
Стр. 310–325
Резюме. Abstract
В. А. Лелёткин, Л. И. Попова
Поглощение света каротиноидом перидинином в клетках симбиотических зооксантелл и расселение герматипных кораллов на глубину
Стр. 251–257
Резюме. Abstract
Р. И. Чураев
Контуры неканонической теории наследственности: от генов к эпигенам
Стр. 99–122
Резюме. Abstract
О. Н.Тиходеев
Молекулярные механизмы макроэволюции
Стр. 13–27
Резюме. Abstract
Л. А. Васильева
Изменение системы жилкования крыла Drosophila melanogaster под действием температурного шока и селекции
Стр. 68–74
Резюме. Abstract
И. В. Кудрявцев, А. В. Полевщиков
Сравнительно-иммунологический анализ клеточных и гуморальных защитных факторов иглокожих
Стр. 218–231
Резюме. Abstract
Е. С. Аракелова, М. А. Чеботарева, С. А. Забелинский
О совместном влиянии природных температур и трематод на жирно-кислотный состав липидов у Littorina saxatilis (Olivi 1792) (Gastropoda, Prosobranchia)
Стр. 266–272
Резюме. Abstract
С. И. Малецкий
Эпигенетические и синергические формы наследования репродуктивных признаков у покрытосеменных растений
Стр. 116–135
Резюме. Abstract

ПОСЛЕДНИЕ ВЫПУСКИ     IN ENGLISH

ПОИСК  

 

ПОПУЛЯРНЫЕ СИНОПСИСЫ

Том 77 № 2, Март-апрель, 2016
Гаструляция книдарий: ключ к пониманию филогенеза или хаос вторичных модификаций?
Данные по эмбриональному развитию книдарий, относящихся к низшим многоклеточным животным, часто используются для решения вопросов, связанных с происхождением и ранней эволюцией Metazoa, а также с основными закономерностями эволюции онтогенеза. Особое внимание уделяется гаструляции – морфогенетическому процессу, в ходе которого клетки раннего эмбриона дифференцируются на зародышевые листки и формируется первичный план строения. В статье проведен сравнительный анализ гаструляции различных книдарий. Мы показывали, что для гаструляционных морфогенезов книдарий характерна высокая степень межгрупповой, внутригрупповой и индивидуальной изменчивости. Мы считаем, что способ гаструляции у книдарий определяется не столько эволюционной историей рассматриваемого вида, сколько эволюционно пластичными адаптивными признаками, такими, как размер яйцеклетки и содержание в ней желтка, число клеток на стадии бластулы или морулы, наличие фототрофных симбионтов, экология личинки. Поскольку онтогенез книдарий обладает высокой эволюционной пластичностью, его изучение должно способствовать лучшему пониманию фундаментальных закономерностей эволюции процессов развития.
Том 77 № 2, Март-апрель, 2016
Моделирование распространения видов по данным рельефа и дистанционного зондирования на примере сосудистых растений нижнего горного пояса хр. Тукурингра (Зейский заповедник, Амурская область)
В предлагаемой работе обсуждается опыт создания картографических моделей распространения видов растений горной территории c использованием данных дистанционного зондирования. В полученных моделях распространение стенотопных (привязанных к определенному ландшафту) видов объясняется преимущественно переменными рельефа, которые, в свою очередь, определяют термические и влажностные условия местообитаний. В моделях эвритопных (широко распространённых) видов значительный вклад имеют переменные, полученные на основе данных дистанционного зондирования, описывающие параметры почвенно-растительного покрова.
Том 77 № 2, Март-апрель, 2016
В каком случае родственники - лучшие соседи?
Методами филогенетического анализа были исследованы сообщества растений Тебердинского заповедника. Считается, что сообщества, образованные более близкородственными видами, формировались в большей степени под влиянием абиотических (средовых) факторов, тогда как более выровненные по родству сообщества формируются под действием межвидовых конкурентных отношений (как благоприятствование, так и исключение). Оказалось, что сложные абиотические условия в местах обитания сообществ могут приводить к разному результату в зависимости от возраста сообщества. Степень родства таксонов наиболее высока в сообществах, развивающиеся на скалах и альпийских пустошах. А сообщества, образованные неродственными видами, могут быть либо значительного возраста (кустарниковые и кустраничковые сообщества), либо формируются во влажных и продуктивных местообитаниях (высокогорные эутрофные болота).


МАТЕРИАЛЫ ПО ТЕМАМ


 
 


при поддержке фонда Дмитрия Зимина - Династия