Элементы Элементы большой науки

Поставить закладку

Напишите нам

Карта сайта

Содержание
Энциклопедия
Новости науки
LHC
Картинка дня
Библиотека
Видеотека
Книжный клуб
Задачи
Масштабы: времена
В помощь читателю
Миллисекунды
Микросекунды
Наносекунды
От предметов к веществу
Коллективные явления
Электромагнитные колебания
Информационная емкость радиоволны
Пикосекунды
Фемтосекунды
Аттосекунды
Зептосекунды
Йоктосекунды
От секунды до года
Астрономические времена
Сонолюминесценция
Фолдинг белков
Возбужденные атомы
Ядерные распады
Элементарные частицы
Движение континентов
Детские вопросы
Плакаты
Научный календарь
Наука и право
ЖОБ
Наука в Рунете

Поиск

Подпишитесь на «Элементы»



ВКонтакте
в Твиттере
в Фейсбуке
на Youtube
в Instagram





Главная / Масштабы: времена / Наносекунды / Информационная емкость радиоволны

Наносекунды: 4. Информационная емкость радиоволны

Запись звука в радиоволне с помощью амплитудной модуляции

Запись звука в радиоволне с помощью амплитудной модуляции. Берется несущая волна определенной частоты (зеленая линия), затем ее амплитуда делается то больше, то меньше, в соответствии с записываемым сигналом (красная линия), и получается амплитудно-модулированная волна на выходе (синяя линия). Изображение с сайта almico.com

Радиоволны нам нужны не просто сами по себе, а для передачи информации. В принципе, более длинные волны, скажем в килогерцевом диапазоне, тоже подойдут для этих целей; они, собственно, и используются в некоторых технических приложениях. Но у них есть своя слабость — у них маленькая информационная емкость.

Цифровой сигнал, закодированный в волне с помощью частотной манипуляции

Цифровой сигнал, закодированный в волне с помощью частотной манипуляции. Изображение с сайта ru.wikipedia.org

Подсчет тут простой. Радиоволна в виде идеального гармонического колебания не представляет для нас никакой ценности, потому что она не несет никакой информации. Закодировать информацию — хоть аналоговую, в виде плавного сигнала, хоть цифровую, в виде последовательности битов, — в радиоволну можно, лишь модулируя ее характеристики (т. е. регулярно изменяя их то так, то этак). Есть разные способы модуляции: амплитудная (AM), частотная (FM) и другие, более сложные. Но все их объединяет фундаментальное ограничение: закодированный сигнал меняется медленнее несущей частоты. Грубо говоря, на каждый бит информации вам нужно выделить одно или несколько колебаний; вы не сможете в одно колебание уместить несколько битов. Так что если вы возьмете радиоволну с частотой 10 кГц, то аудиосигнал (звук с частотой до нескольких кГц) в ней уместится, но вот телевизионный сигнал — уже нет. Цифровой сигнал передавать по ней можно, но скорость не будет превышать скромного килобайта в секунду.

Теперь мы видим еще одну причину, по которой наносекундный диапазон столь важен для нас. Передавая информацию по беспроводным каналам, мы привыкли оперировать с потоками порядка мегабайтов в секунду. Получается, на каждый бит выделяется не более нескольких наносекунд. А значит, несущая волна должна колебаться еще быстрее, чтобы вместить в себя такой поток информации.

Назад: Электромагнитные колебания  |  Далее: Пикосекунды

 

Комментарии (2)
 


при поддержке фонда Дмитрия Зимина - Династия