Фрактал Ньютона

Для просмотра анимации необходимо включить JavaScript.
 

Скачать Adobe Flash Player (необходима версия не ниже 9)

 

Еще один тип динамических фракталов составляют фракталы (так называемые бассейны) Ньютона. Формулы для их построения основаны на методе решения нелинейных уравнений, который был придуман великим математиком еще в XVII веке. Применяя общую формулу метода Ньютона zn+1 = zn – f(zn)/f'(zn), n = 0, 1, 2, ... для решения уравнения f(z) = 0 к многочлену zk – a, получим последовательность точек: zn+1 = ((k – 1)znk – a)/kznk–1, n = 0, 1, 2, ... . Выбирая в качестве начальных приближений различные комплексные числа z0, будем получать последовательности, которые сходятся к корням этого многочлена. Поскольку корней у него ровно k, то вся плоскость разбивается на k частей — областей притяжения корней. Границы этих частей имеют фрактальную структуру. (Заметим в скобках, что если в последней формуле подставить k = 2, а в качестве начального приближения взять z0 = a, то получится формула, которую реально используют для вычисления квадратного корня из a в компьютерах.) Наш фрактал получается из многочлена f(z) = z3 – 1.

См. также: Как это рисовать

Далее: Комплексные числа


0
Написать комментарий

    Элементы

    © 2005-2017 «Элементы»