Ультрафиолет

ближний
энергия E — от 3,3 эВ
температура Т — от 8 тыс. К
частота ν (ню) — от 8 ·1014 Гц
длина волны λ (лямбда) — до 380 нм

вакуумный
E — от 6 эВ
Т — от 14 тыс. К
ν — от 1,5 ·1015 Гц
λ — до 200 нм

Ультафиолетовый диапазон электромагнитного излучения располагается за фиолетовым (коротковолновым) краем видимого спектра.

Ближний ультрафиолет от Солнца проходит сквозь атмосферу. Он вызывает на коже загар и необходим для выработки витамина D. Но чрезмерное облучение чревато развитием рака кожи. УФ излучение вредно для глаз. Поэтому на воде и особенно на снегу в горах обязательно нужно носить защитные очки.

Более жесткое УФ излучение поглощают в атмосфере молекулы озона и других газов. Наблюдать его можно только из космоса, и поэтому его называют вакуумным ультрафиолетом.

Энергии ультрафиолетовых квантов достаточно для разрушения биологических молекул, в частности ДНК и белков. На этом основан один из методов уничтожения микробов. Считается, что пока в атмосфере Земли не было озона, поглощающего значительную часть ультрафиолета, жизнь не могла выйти из воды на сушу.

Ультрафиолет испускают объекты с температурой от тысяч до сотен тысяч градусов, например, молодые горячие массивные звезды. Однако УФ излучение поглощается межзвездными газом и пылью, поэтому часто нам видны не сами источники, а подсвеченные ими космические облака.

Для сбора УФ излучения используют зеркальные телескопы, а для регистрирации служат фотоэлектронные умножители, а в ближнем УФ, как и в видимом свете — ПЗС-матрицы.

Источники

Полярное сияние на Юпитере в ультрафиолете

Полярное сияние на Юпитере в ультрафиолете

Свечение возникает, когда заряженные частицы солнечного ветра сталкиваются с молекулами атмосферы Юпитера. Большинство частиц под действием магнитного поля планеты входит в атмосферу вблизи ее магнитных полюсов. Поэтому сияние возникает в относительно небольшой области. Аналогичные процессы идут на Земле и на других планетах, обладающих атмосферой и магнитным полем. Снимок получен космическим телескопом «Хаббл».

Приемники

Космический телескоп «Хаббл»

Обзоры неба

Небо в жестком ультрафиолете (EUVE)

Небо в жестком ультрафиолете (EUVE)

Обзор построен орбитальной ультрафиолетовой обсерваторией Extreme Ultraviolet Explorer (EUVE, 1992–2001). Линейчатая структура изображения соответствует орбитальному движению спутника, а неоднородность яркости отдельных полос связана с изменениями в калибровке аппаратуры. Черные полосы — участки неба, которые не удалось пронаблюдать. Незначительное число деталей на этом обзоре связано с тем, что источников жесткого ультрафиолета относительно мало и, кроме того, ультрафиолетовое излучение рассеивается космической пылью.

Земное применение

Солярий

Солярий

Установка для дозированного облучения тела ближним ультрафиолетом для загара. Ультрафиолетовое излучение приводит к выделению в клетках пигмента меланина, который меняет цвет кожи.

Медики делят ближний ультрафиолет на три участка: UV-A (400–315 нм), UV-B (315–280 нм) и UV-C (280–200 нм). Самый мягкий ультрафиолет UV-A стимулирует освобождение меланина, запасенного в меланоцитах — клеточных органеллах, где он вырабатывается. Более жесткий ультрафиолет UV-B запускает производство нового меланина, а также стимулирует выработку в коже витамина D. Модели соляриев различаются по мощности излучения в этих двух участках УФ-диапазона.

В составе солнечного света у поверхности Земли до 99% ультрафиолета приходится на участок UV-A, а остальное — на UV-B. Излучение в диапазоне UV-C обладает бактерицидным действием; в солнечном спектре его намного меньше, чем UV-A и UV-B, кроме того, большая его часть поглощается в атмосфере. Ультрафиолетовое излучение вызывает иссушение и старение кожи и способствует развитию раковых заболеваний. Причем излучение в диапазоне UV-A увеличивает вероятность самого опасного вида рака кожи — меланомы.

Излучение UV-B практически полностью блокируется защитными кремами, в отличие от UV-A, которое проникает через такую защиту и даже частично через одежду. В целом считается, что очень небольшие дозы UV-B полезны для здоровья, а остальной ультрафиолет вреден.

Детектор валюты

Детектор валюты

Ультрафиолетовое излучение применяется для определения подлинности денежных купюр. В купюры впрессовываются полимерные волокна со специальным красителем, который поглощает ультрафиолетовые кванты, а потом испускает менее энергичное излучение видимого диапазона. Под действием ультрафиолета волокна начинают светиться, что и служит одним из признаков подлинности.

Ультрафиолетовое излучение детектора невидимо для глаза, синее свечение, заметное при работе большинства детекторов, связано с тем, что применяемые источники ультрафиолета излучают также и в видимом диапазоне.

Далее: Видимый диапазон


0
Написать комментарий

    Элементы

    © 2005-2017 «Элементы»