Элементы Элементы большой науки

Поставить закладку

Напишите нам

Карта сайта

Содержание
Энциклопедия
Новости науки
LHC
Картинка дня
Библиотека
Видеотека
Книжный клуб
Задачи
Масштабы: времена
Детские вопросы
Плакаты
Мгновение
Фракталы
Ускоритель
Покорение воздуха
Гравитация
Вечный двигатель
Электромагнитное излучение
Природа электромагнитных волн
Частота и длина волны
История открытия электромагнитных волн
Великое объединение
Энергия кванта
Температура излучения
Диапазоны излучения и вещество
Что изображено на плакате
Соотношения и единицы
Гамма-излучение
Рентген
Ультрафиолет
Видимый диапазон
Инфракрасный диапазон
Радиоизлучение и микроволны
За пределами спектра
«Легкая версия» плаката
Возможности человека
Научный календарь
Наука и право
ЖОБ
Наука в Рунете

Поиск

Подпишитесь на «Элементы»



ВКонтакте
в Твиттере
в Фейсбуке
на Youtube
в Instagram





Главная / Плакаты / Электромагнитное излучение / Гамма-излучение

Гамма-излучение

мягкое
энергия E — от 100 кэВ = 105 эВ
температураТ — от 20 млн К
частота ν (ню) — от 2 ·1019 Гц
длина волны λ (лямбда) — до 10–11 м

жесткое
E — от 10 МэВ = 107 эВ
Т — от 2 ·1010 К
ν — от 2 ·1021 Гц
λ — до 10–13 м

сверхвысоких энергий
E — от 100 ГэВ = 1011 эВ
Т — от 2 ·1014 К
ν — от 2 ·1025 Гц
λ — до 10–17 м

ультравысоких энергий
E — от 100 ТэВ = 1014 эВ
Т — от 2 ·1017 К
ν — от 2 ·1028 Гц
λ — до 10–20 м

Открыто в 1910 г. Генри Брэггом. Электромагнитная природа доказана в 1914 г. Эрнестом Резерфордом.

Это самый широкий диапазон электромагнитного спектра, поскольку он не ограничен со стороны высоких энергий. Мягкое гамма-излучение образуется при энергетических переходах внутри атомных ядер, более жесткое — при ядерных реакциях. Гамма-кванты легко разрушают молекулы, в том числе биологические, но, к счастью, не проходят через атмосферу. Наблюдать их можно только из космоса.

Гамма-кванты сверхвысоких энергий рождаются при столкновении заряженных частиц, разогнанных мощными электромагнитными полями космических объектов или земных ускорителей элементарных частиц. В атмосфере они крушат ядра атомов, порождая каскады частиц, летящих с околосветовой скоростью. При торможении эти частицы испускают свет, который наблюдают специальными телескопами на Земле.

При энергии свыше 1014 эВ лавины частиц прорываются до поверхности Земли. Их регистрируют сцинтилляционными датчиками. Где и как образуются гамма-лучи ультравысоких энергий, пока не вполне ясно. Земным технологиям такие энергии недоступны. Самые энергичные кванты — 1020–1021 эВ, приходят из космоса крайне редко — примерно один квант в 100 лет на квадратный километр.

Источники

Остаток вспышки сверхновой звезды в гамма-лучах сверхвысоких энергий

Остаток вспышки сверхновой звезды в гамма-лучах сверхвысоких энергий Изображение получено в 2005 году гамма-телескопом HESS. Оно стало подтверждением того, что остатки сверхновых служат источниками космических лучей — энергичных заряженных частиц, которые, взаимодействуя с веществом, порождают гамма-излучение (см. Схема генерации гамма-излучения). Ускорение частиц, по всей видимости, обеспечивается мощным электромагнитным полем компактного объекта — нейтронной звезды, которая образуется на месте взорвавшейся сверхновой.

Схема генерации гамма-излучения

Схема генерации гамма-излучения Столкновения энергичных заряженных частиц космических лучей с ядрами атомов межзвездной среды порождают каскады других частиц, а также гамма-квантов. Этот процесс аналогичен каскадам частиц в земной атмосфере, которые возникают под воздействием космических лучей (см. Схема телескопа для гамма-излучения сверхвысоких энергий). Происхождение космических лучей с самыми высокими энергиями еще изучается, но уже есть данные, что они могут генерироваться в остатках сверхновых звезд.

Аккреционный диск вокруг сверхмассивной черной дыры (рис. художника)

Аккреционный диск вокруг сверхмассивной черной дыры (рис. художника)

В ходе эволюции крупных галактик в их центрах образуются сверхмассивные черные дыры, массой от нескольких миллионов до миллиардов масс Солнца. Они растут за счет аккреции (падения) межзвездного вещества и даже целых звезд на черную дыру.

При интенсивной аккреции вокруг черной дыры образуется быстро вращающийся диск (из-за сохранения момента вращения падающего на дыру вещества). Из-за вязкого трения слоев, вращающихся с разной скоростью, он всё время разогревается и начинает излучать в рентгеновском диапазоне.

Часть вещества при аккреции может выбрасываться в виде струй (джетов) вдоль оси вращающегося диска. Этот механизм обеспечивает активность ядер галактик и квазаров. В ядре нашей Галактики (Млечного Пути) также располагается черная дыра. В настоящее время ее активность минимальна, однако по некоторым признакам около 300 лет назад она была значительно выше.

Приемники

Гамма-телескоп сверхвысоких энергий HESS

Гамма-телескоп сверхвысоких энергий HESS

Расположен в Намибии, состоит из 4 параболических тарелок диаметром 12 метров, размещенных на площадке размером 250 метров. На каждой из них закреплено 382 круглых зеркала диаметром 60 см, которые концентрируют тормозное излучение, возникающее при движении энергичных частиц в атмосфере (см. схему телескопа).

Телескоп начал работать в 2002 году. Он в равной мере может использоваться для регистрации энергичных гамма-квантов и заряженных частиц — космических лучей. Одним из главных его результатов стало прямое подтверждение давнего предположения о том, что остатки вспышек сверхновых звезд являются источниками космических лучей.

Схема телескопа для гамма-излучения сверхвысоких энергий

Схема телескопа для гамма-излучения сверхвысоких энергий

Когда энергичный гамма-квант входит в атмосферу, он сталкивается с ядром одного из атомов и разрушает его. При этом порождается несколько обломков атомного ядра и гамма-квантов меньшей энергии, которые по закону сохранения импульса движутся почти в том же направлении, что и исходный гамма-квант. Эти обломки и кванты вскоре сталкиваются с другими ядрами, образуя в атмосфере лавину частиц.

Большинство этих частиц имеет скорость, превышающую скорость света в воздухе. Вследствие этого частицы испускают тормозное излучение, которое достигает поверхности Земли и может регистрироваться оптическими и ультрафиолетовыми телескопами. Фактически сама земная атмосфера служит элементом гамма-телескопа. Для гамма-квантов сверхвысоких энергий расходимость пучка, достигающего поверхности Земли, составляет около 1 градуса. Этим определяется разрешающая способность телескопа.

При еще более высокой энергии гамма-квантов до поверхности доходит сама лавина частиц — широкий атмосферный ливень (ШАЛ). Их регистрируют сцинтилляционными датчиками. В Аргентине сейчас строится обсерватория имени Пьера Оже (в честь первооткрывателя ШАЛ) для наблюдения гамма-излучения и космических лучей ультравысоких энергий. Он будет включать несколько тысяч цистерн с дистиллированной водой. Установленные в них ФЭУ будут следить за вспышками, происходящими в воде под воздействием энергичных частиц ШАЛ.

Гамма-обсерватория INTEGRAL (INTErnational Gamma-Ray Astrophysics Laboratory)

Гамма-обсерватория INTEGRAL (INTErnational Gamma-Ray Astrophysics Laboratory) Орбитальная обсерватория, работающая в диапазоне от жесткого рентгена до мягкого гамма-излучения (от 15 кэВ до 10 МэВ), была выведена на орбиту с космодрома Байконур в 2002 году. Обсерватория построена Европейским космическим агентством (ESA) при участии России и США. В конструкции станции использована такая же платформа, как и в ранее запущенной (1999) европейской рентгеновской обсерватории XMM-Newton.

Фотоэлектронный умножитель (ФЭУ)

Фотоэлектронный умножитель (ФЭУ)
 Схема фотоэлектронного умножителя (ФЭУ)

Электронное устройство для измерения слабых потоков видимого и ультрафиолетового излучения. ФЭУ представляет собой электронную лампу с фотокатодом и набором электродов, к которым приложено последовательно возрастающее напряжение с суммарным перепадом до нескольких киловольт.

Кванты излучения падают на фотокатод и выбивают из него электроны, которые движутся к первому электроду, образуя слабый фотоэлектрический ток. Однако по пути электроны ускоряются приложенным напряжением и выбивают из электрода значительно большее число электронов. Так повторяется несколько раз — по числу электродов. В итоге поток электронов, пришедший от последнего электрода к аноду, увеличивается на несколько порядков по сравнению с первоначальным фотоэлектрическим током. Это позволяет регистрировать очень слабые световые потоки, вплоть до отдельных квантов.

Важная особенность ФЭУ — быстрота срабатывания. Это позволяет использовать их для регистрации скоротечных явлений, таких как вспышки, возникающие в сцинтилляторе при поглощении энергичной заряженной частицы или кванта.

Матрица ФЭУ

Матрица ФЭУ Отдельный ФЭУ имеет очень небольшую площадь фотокатода и регистрирует только те кванты, которые движутся в его направлении. Чтобы повысить эффективность регистрации, вокруг объема сцинтиллятора размещают большое число ФЭУ, связанных в единую систему. Матрицы ФЭУ также применяют для регистрации частиц широких атмосферных ливней и в нейтринных телескопах.

Обзоры неба

Небо в гамма-лучах с энергией 100 МэВ (CGRO)

Небо в гамма-лучах с энергией 100 МэВ (CGRO) Обзор в диапазоне жесткого гамма-излучения выполнен космической гамма-обсерваторией «Комптон» (Compton Gamma Ray Observatory, CGRO), которая была запущена по программе NASA «Великие обсерватории» и с 1991 по 2000 год вела наблюдения в диапазоне от 20 кэВ до 30 ГэВ, то есть от жесткого рентгена до жесткого гамма-излучения.

На карте отчетливо видна плоскость Галактики, где излучение формируется в основном остатками сверхновых. Яркие источники вдали от плоскости Галактики имеют в основном внегалактическое происхождение.

Небо в гамма-лучах с энергией 1,8 МэВ (CGRO-COMPTEL)

Небо в гамма-лучах с энергией 1,8 МэВ (CGRO-COMPTEL) Этот обзор в диапазоне мягкого гамма-излучения также выполнен обсерваторией «Комптон» (см. Небо в гамма-лучах с энергией 100 МэВ), а точнее установленным на ней телескопом COMPTEL.

Источники также концентрируются к плоскости Галактики. В основном это компактные объекты.

Земное применение

Гамма-дефектоскоп

Гамма-дефектоскоп  

Далее: Рентген

Комментарии (1)
 


при поддержке фонда Дмитрия Зимина - Династия