Краткая история ускорителей

Принцип работы всех ускорителей прост — заряженные частицы ускоряются под действием электрического поля.

Первые эксперименты

Краткая история развития ускорителей

Первые эксперименты по изучению атомных ядер проводились вообще без ускорителей. Альфа-частицы (ядра гелия-4), использовавшиеся в таких опытах, получались из распада нестабильных изотопов (например, радия) и сами собой ускорялись в электрическом поле родительского ядра до энергий в несколько МэВ.

Эру ускорительной техники отсчитывают от начала 1930-х годов, когда появились сразу две схемы ускорения частиц до энергий около 1 МэВ. В 1932 году англичанин Джон Кокрофт (John Cockcroft) и ирландец Эрнест Уолтон (Ernest Walton) в Кембридже сконструировали каскадный 800-киловольтный генератор постоянного напряжения, который открыл новую эру в экспериментальной ядерной физике. Уже в первом своем эксперименте они направили пучок ускоренных протонов на мишень из лития-7 и наблюдали самую настоящую ядерную реакцию: ядро лития захватывало протон и затем разваливалось на две альфа-частицы.

Циклотроны

Создать разность потенциалов в десятки мегавольт очень непросто, но быстро выяснилось, что это и не обязательно. Вместо этого можно свернуть ускоритель в кольцо, поместив его в магнитное поле. В отличие от электрического, магнитное поле не ускоряет частицы, а лишь искривляет их траекторию. В частности, в однородном магнитном поле траектория заряженной частицы замыкается в окружность. Если теперь частицу время от времени подталкивать вперед электрическим полем, она будет набирать энергию, постепенно увеличивая радиус траектории. При этом автоматически решаются две задачи: частицы можно удерживать на орбите столько времени, сколько нужно, а ускоряющее электрическое поле не обязательно должно быть большим (тысяча проходов через разность потенциалов в один киловольт эквивалентна мегавольтному линейному генератору).

Ускоритель частиц на основе этого принципа — циклотрон — был задуман Эрнестом Лоуренсом (Ernest Lawrence) в 1929 году и сконструирован в 1931 году. Циклотрон состоит из двух полых половинок диска, внутри которых вращаются частицы. На края зазора между половинками подается переменное напряжение, частота которого точно совпадает с частотой обращения частиц. Когда частицы пролетают сквозь зазор в одну сторону, электрическое поле подталкивает их вперед, а через полпериода, когда они вновь пересекают зазор в обратном направлении с другой, диаметрально противоположной стороны диска, поле уже успевает сменить знак и снова их подталкивает, а не тормозит. Так повторяется круг за кругом, пока не будет достигнута максимальная энергия.

Первый циклотрон
Первый циклотрон (справа), построенный Эрнестом Лоуренсом (слева) в 1931 году, умещался на ладони и разгонял протоны всего до 0,08 МэВ. Фото с сайтов nuclphys.sinp.msu.ru и www.scienceclarified.com

Принципиально важно, что, пока скорость частиц существенно меньше скорости света, частота их обращения остается постоянной: рост скорости в точности компенсируется увеличением радиуса орбиты. Благодаря этому частица всегда подлетает к зазору через одинаковые интервалы времени, и поэтому на края зазора можно подавать переменное напряжение известной и строго фиксированной частоты.

Первый построенный Лоуренсом циклотрон был чуть больше 10 см в диаметре и разгонял протоны всего до 80 кэВ (килоэлектронвольт). Быстрый прогресс привел к появлению циклотрона на 8 МэВ в 1936 году и к 200-Мэвному многометровому гиганту в 1946 году. Правда, при такой энергии скорость протонов уже близка к скорости света, поэтому нерелятивистская формула для расчета циклотронной частоты уже не работает. Достичь таких энергий физики сумели, лишь научившись подстраивать частоту переменного электрического поля в зазоре в соответствии с частотой обращения частиц.

Краткая история развития ускорителей
К концу 1940-х годов циклотроны выросли до размеров небольшого здания. На фото — 184-дюймовый циклотрон в Университете Беркли в Калифорнии, разгонявший частицы до 100 МэВ

Синхрофазотроны

Краткая история развития ускорителей
В. И. Векслер придумал, как разгонять частицы до еще больших энергий. Так появились синхротроны

Дальнейшее увеличение энергий столкнулось с рядом проблем. Среди них были как чисто конструкторские трудности (необходимо обеспечить однородное магнитное поле, глубокий вакуум и механическую прочность, не мешая при этом частицам раскручиваться по спирали), так и принципиальная проблема — частицы разбегались по камере и попадали в ускорительные зазоры в неправильные моменты времени, из-за чего они не ускорялись.

В 1944 году советский физик Владимир Векслер и независимо от него годом позже американец Эдвин Макмиллан (Edwin McMillan) придумали принцип автофазировки. Их идея состояла в специальной настройке электрического поля в зазоре, которая отстающие частицы подгоняла бы сильнее, а убежавшие вперед — слабее. В результате частицы всегда будут держаться в виде компактного, не расплывающегося сгустка. Наконец, чтобы избавиться от инженерных проблем, частицы стали запускать вместо огромного диска в длинную свернутую в кольцо трубу, а для удержания их на постоянной орбите синхронно с ростом энергии увеличивали магнитное поле. Ускорители такого типа получили название синхрофазотронов. В последующие годы их энергия выросла до нескольких ГэВ и на них были совершены многие открытия в физике элементарных частиц. В основе многих современных ускорителей, в частности LHC, лежит принцип синхрофазотрона.

Коллайдеры

Краткая история развития ускорителей
Итальянский коллайдер AdA, построенный в 1960-е годы Бруно Тушеком. Независимо от итальянцев аналогичный коллайдер был построен в Новосибирске группой Г. И. Будкера

Следующим этапом в истории ускорительной техники стало создание коллайдеров — ускорителей со встречными пучками, где два пучка частиц раскручиваются в противоположных направлениях и сталкиваются друг с другом. Изначально эту идею высказал и даже запатентовал в 1943 году норвежский физик Рольф Видероэ (Rolf Wideröe), однако реализована она была лишь в начале 1960-х годов тремя независимыми командами исследователей: итальянской группой под руководством австрийца Бруно Тушека (Bruno Touschek), американцами под руководством Джерарда О’Нейлла (Gerard K. O'Neill) и Вольфганга Пановски (Wolfgang K. H. Panofsky) и новосибирской группой, возглавляемой Г. И. Будкером.

До того момента все эксперименты проводились с неподвижной мишенью. Когда высокоэнергетическая частица налетает на неподвижную частицу, рожденные продукты столкновения летят вперед с большой скоростью, и именно на их кинетическую энергию тратится основная доля энергии пучков. Если же сталкиваются летящие навстречу друг другу одинаковые частицы, то большая часть их энергии расходуется по прямому назначению: на рождение частиц. По формулам релятивистской механики можно вычислить полную энергию в системе центра масс — именно эту часть энергии исходных частиц можно потратить на рождение новых частиц. В первом случае это примерно , а во втором случае 2E. Если частицы ультрарелятивистские, E >> mc2, то в коллайдерах на встречных пучках могут рождаться гораздо более тяжелые частицы, чем в экспериментах с неподвижной мишенью при той же энергии пучка.

Краткая история развития ускорителей
Схема расположения Большого адронного коллайдера

В 2008 году в строй вступает самый мощный ускоритель, когда-либо построенный человеком, — Большой адронный коллайдер, LHC, с энергией протонов 7 ТэВ (см. раздел об LHC на «Элементах»). Он находится в подземном кольцевом туннеле длиной 27 км на границе Швейцарии и Франции. Физики надеются, что результаты LHC приведут к новому прорыву в понимании глубинного устройства нашего мира.

Сейчас ускорители подошли к своему конструкционному пределу. Существенное увеличение энергии частиц станет возможным, только если коллайдеры станут линейными и будет реализована более эффективная методика ускорения частиц. Прорыв обещает лазерная или лазерно-плазменная методика ускорения. В ней короткий, но мощный лазерный импульс либо непосредственно разгоняет заряженные частицы, либо создает возмущение в облаке плазмы, которое подхватывает пролетающий сгусток электронов и резко его ускоряет. Для успешного применения этой схемы в ускорителе потребуется преодолеть еще немало трудностей (научиться состыковывать друг с другом несколько ускоряющих элементов, справиться с большим угловым расхождением, а также разбросом по энергии ускоренных частиц), но первые результаты очень обнадеживают.

Далее: Как работает ускоритель


0
Написать комментарий

    Элементы

    © 2005-2017 «Элементы»