Элементы Элементы большой науки

Поставить закладку

Напишите нам

Карта сайта

Содержание
Энциклопедия
Новости науки
LHC
Картинка дня
Библиотека
Видеотека
Книжный клуб
Задачи
Масштабы: времена
Детские вопросы
Плакаты
Научный календарь
Наука и право
ЖОБ
Наука в Рунете

Поиск

Подпишитесь на «Элементы»



ВКонтакте
в Твиттере
в Фейсбуке
на Youtube
в Instagram



Библиотека

 
Л. Краусс
«Страх физики». Глава из книги


Т. Пичугина
Как увидеть тень черной дыры


Интервью с В. Сурдиным
Полет на Луну — это командировка на неделю


А. Акопян
Как ищут тёмную материю


И. Акулич
Идеальный почтовый индекс


А. Бердников
Интерференция в домашних условиях. Плёнки и антиплёнки


Интервью с Л. Марголисом
Леонид Марголис: «Мне всегда было интересно, как клетки разговаривают друг с другом»


А. Иванов
Сибирь и Северная Америка были единым целым более миллиарда лет назад


П. Амнуэль
Одиночество во Вселенной


Р. Фишман
Детективы каменного века







Главная / Новости науки версия для печати

Ускоряющееся расширение Вселенной станет доступно прямому измерению в ближайшее десятилетие


Ускорение галактик, находящихся на разных красных смещениях

Ускорение галактик, находящихся на разных красных смещениях z от 0 до 3. Черная линия — теоретическое предсказание на основе современной космологической картины (ΛCDM); штриховые линии — теоретические предсказания, обходящиеся совсем без темной энергии. Точки с погрешностями — ожидаемые экспериментальные результаты, которые сможет получить специализированный радиотелескоп нового поколения за десятилетие работы. Цветом выделена та область красных смещений, на которые ориентируется будущий эксперимент CHIME. Изображение из обсуждаемой статьи

Известно, что Вселенная расширяется, причем расширяется с ускорением. Однако все экспериментальные свидетельства в пользу ускорения были получены косвенными методами: для прямого наблюдения пока не хватает чувствительности телескопов. Расчеты, опубликованные в журнале Physical Review Letters, показывают, что небольшая модификация строящихся сейчас радиотелескопов позволит вскоре напрямую обнаружить ускоренное расширение Вселенной.

Ускоряющееся расширение Вселенной и трудности его наблюдения

Астрономические наблюдения показывают, что Вселенная в целом расширяется. Далекие галактики движутся в сторону от нас, причем чем дальше они находятся, тем быстрее они от нас убегают. Этот факт, равно как и закон Хаббла, связывающий расстояние до галактик со скоростью их удаления от нас, известны уже почти век. Подробнее об измерениях, на которые опираются эти выводы, читайте в статье Откуда астрономы это знают?, в публичной лекции Джона Мазера и в большом списке вопросов и ответов по космологии.

Относительно недавно было также обнаружено, что Вселенная сейчас расширяется с ускорением. Первые наблюдательные результаты в пользу этого появились в 1998 году, и после десятилетия критических проверок и независимых подтверждений этот вывод тоже стал установленным фактом в космологии. Нобелевская премия по физике за 2011 год была присуждена как раз за это открытие. В рамках современной космологической картины мира за это ускоряющееся расширение отвечает не обычное вещество и даже не загадочная темная материя, а совершенно особенная субстанция, названная темной энергией.

Астрономические наблюдения, подтверждающие ускоряющееся расширение Вселенной, разнообразны. Однако надо четко понимать, что все эти наблюдения — косвенные. Мы не видим напрямую, что темп расширения Вселенной растет со временем. Мы имеем лишь каталог объектов, находящихся на разных расстояниях от нас, измеряем их скорости и яркости, пытаемся сравнить получившееся распределение с теоретическими расчетами и понимаем, что весь набор данных не удается объяснить простым равномерным расширением. Зато предположение о темной энергии, которое подтверждают и другие космологические данные, отлично с этим описанием справляется.

Тем не менее для пущей достоверности, для железной гарантии факт ускоряющегося расширения Вселенной полезно измерить и напрямую. Это можно сделать с помощью так называемого теста Сэндиджа–Лоуба (Sandage–Loeb test). Выглядит он довольно просто. Мы следим за каким-то далеким объектом и измеряем его скорость удаления с помощью эффекта Доплера. Если свет был испущен источником на одной длине волны, а мы его регистрируем на другой, большей, то их отношение даст нам величину красного смещения источника z, а оно позволяет найти скорость его удаления. Если такое измерение проводить раз за разом в течение нескольких лет, то рано или поздно мы заметим, что красное смещение растет — источник света ускоряется относительно нас. При таком измерении нам не требуется сравнивать разные объекты, оценивать расстояние до них или измерять их яркость. Достаточно лишь следить за красным смещением одного и того же объекта, но в течение долгого времени. Поскольку спектроскопические измерения очень точны, а сам источник никуда не девается, казалось бы, проблем с этим измерением быть не должно.

Однако чуть более внимательный взгляд вскрывает ряд трудностей. Во-первых, предполагаемое ускорение должно быть очень маленьким. В качестве самой грубой оценки можно взять скорость света деленную на возраст Вселенной (13 млрд лет), это даст примерно 2 (см/с)/год, то есть около 10−10 от ускорения свободного падения за Земле. Такого порядка было бы ускорение у объектов на больших красных смещениях z — при условии, что они действительно ускоряются.

Однако тут всплывает вторая трудность. Ускоренным расширение было не всегда. Ускорение началось относительно недавно по космологическим масштабам, когда возраст Вселенной составлял уже 10 млрд лет. До этого Вселенная расширялась с замедлением: гравитационное притяжение тогда еще преобладало над расталкивающим эффектом темной энергии. Поэтому если мы будем наблюдать далекие галактики с z > 2, то мы будем видеть их еще в ту далекую эпоху, когда ускорения еще не было. Так что для прямого наблюдения ускорения приходится смотреть лишь на довольно близкие объекты, только они уже ускоряются для наших сегодняшних наблюдений. А раз они близки, то и ускорение у них будет еще меньше; вычисления показывают, что оно не будет превышать 0,4 (см/с)/год (см. рисунок).

Третья трудность возникает из банального факта, что галактики взаимодействуют друг с другом. Это значит, что у них есть и обычное ускорение, вызванное гравитационным притяжением и вовсе не связанное с ускоренным расширением Вселенной. Его тоже надо принимать во внимание, чтоб не спутать его искомым космологическим эффектом. Да и сама Солнечная система, а значит, и приборы наблюдения, тоже испытывает центростремительное ускорение, направленное к центру нашей галактики. К счастью, это собственное ускорение легко контролируется с помощью периодов пульсаров.

Четвертая трудность вызвана уже внутренним движением светящегося вещества внутри источника. Свет от далекой галактики — это совокупность свечения большого числа объектов или протяженных областей. У всех них есть какие-то свои скорости движения внутри галактики, которые то складываются, то вычитаются из скорости самой галактики. Даже внутри одного горячего источника есть атомы, которые в момент излучения движутся с большими скоростями на нас или от нас. Поэтому даже если все они в своих системах отсчета излучают свет на какой-то одной длине волны, мы будем наблюдать не узкую, а слегка размытую линию излучения. Из-за этого неизбежного доплеровского размытия заметить ничтожный космологический сдвиг линии излучения будет очень трудно.

Прямое измерение ускорения в радиолинии водорода

В статье Method for Direct Measurement of Cosmic Acceleration by 21-cm Absorption Systems, опубликованной на днях в журнале Physical Review Letters, описывается метод прямого измерения ускоренного расширения Вселенной, позволяющий частично преодолеть эти трудности. Сам по себе этот метод тоже не нов, однако до сих пор не было особой уверенности, что он позволит за разумные сроки привести к надежному обнаружению ускорения. Приведенные в статье расчеты демонстрируют, что это действительно так, если только внести некоторые модификации в строящиеся сейчас радиотелескопы нового поколения.

Здесь используется по сути тот же эффект, но только не для линий излучения, а для линий поглощения, и кроме того — не для оптического диапазона, а для радиоизлучения на длине волны 21 см. Число это взято вовсе не с потолка. Знаменитая спектральная линия 21 см возникает в результате перескока электрона в атоме водорода между двумя очень близкими уровнями энергии, разделенными за счет сверхтонкого расщепления. Радионаблюдения неба на этой длине волны позволяют картографировать протяженные облака нейтрального атомарного водорода в галактиках. Если достаточно плотное облако водорода находится на пути радиоизлучения от какой-то еще более далекой галактики, мы видим линию поглощения — провал интенсивности радиосигнала на этой длине волны. Сравнивая измеренную длину волны с номинальной, мы по доплеровскому эффекту получаем скорость облака водорода.

В статье описано несколько преимуществ радионаблюдений на 21 см по сравнению с обычными оптическими. Во-первых, сама по себе эта линия исключительно узкая и ее положение известно с огромной точностью. Во-вторых, она возникает в облаке холодного водорода, поскольку горячий водород не оставался бы нейтральным газом. Это значит, что скорость движения отдельных атомов невелика и размытие линии получается намного меньше, чем для горячего источника.

В-третьих, сейчас строится целое семейство радиотелескопов, которые в ближайшие годы начнут наблюдать Вселенную как раз в радиолинии нейтрального водорода и на нужных красных смещениях. Это, например, канадский эксперимент CHIME, который должен заработать в следующем году, или, в более отдаленной перспективе, гигантский проект SKA с площадью радиоантенн в квадратный километр. Их основные задачи связаны с изучением пространственного распределения водорода во Вселенной, но, как поясняют авторы статьи, их можно адаптировать и для детектирования ускоренного расширения. Для этого потребуется еще больше повысить спектральное разрешение телескопа, а также гарантировать стабильность частоты на уровне 10−11 за десятилетие. В принципе, это реализуемо с помощью современных стандартов частоты, однако их необходимо внедрять в проекты уже сейчас, на этапе строительства радиотелескопов.

Надо сказать, что попытки измерить ускорение с помощью этой же линии 21 см уже предпринимались. Последний результат здесь датируется 2012 годом. Радионаблюдения в течение 13 лет за десятком объектов, расположенных на красных смещениях от 0,09 до 0,69, дало следующий результат для ускорения: −5,5±2,2 (м/с)/год (заметьте — м/с, а не см/с!). Знак минус означает не ускорение, а замедление, что на первый взгляд противоречит ускоряющемуся расширению, однако из-за большой погрешности никаких окончательных выводов тут делать не следует. Чтобы почувствовать предсказываемое ускоренное расширение Вселенной, чувствительность эксперимента следует увеличить на три порядка. Авторы статьи уверяют, что это возможно. Выигрыш тут будет не только в новых, более чувствительных радиотелескопах, но и в огромном числе (порядка миллиона) конкретных объектов с нейтральным водородом, за которыми будет одновременно вестись наблюдение. Усреднение по всем им позволит резко уменьшить погрешность.

Оценки для эксперимента CHIME показывают, что за 10 лет работы можно будет зарегистрировать ускоренное расширение Вселенной на уровне статистической значимости 5 стандартных отклонений. Для проекта SKA речь уже идет о считанных годах. Стоит подчеркнуть, что это измерение не ограничивается одним лишь фактом наблюдения ускорения, а позволит еще и измерить в деталях, как оно зависит от красного смещения. Это значит, что откроется возможность напрямую проверять разные теоретические модели темной энергии, в том числе и экзотические модели гравитации. Иными словами, в арсенале космологов появится еще один мощный инструмент исследования.

Источник: Hao-Ran Yu, Tong-Jie Zhang, and Ue-Li Pen. Method for Direct Measurement of Cosmic Acceleration by 21-cm Absorption Systems // Physical Review Letters 113, 041303 (2014).

Игорь Иванов


Комментарии (94)



Последние новости: АстрофизикаИгорь Иванов

27.07
Рекордные по чувствительности эксперименты LUX и PandaX пока не поймали частицы темной материи
20.06
LIGO поймала новые всплески гравитационных волн
27.04
Теоретики продолжают искать объяснения двухфотонному пику
1.04
Обнаружены коллективные эффекты в поведении физиков-теоретиков
23.03
Загадочный двухфотонный пик проступает всё сильнее
29.02
Метрика Карла Шварцшильда: предыстория, история и часть постистории
11.02
Гравитационные волны — открыты!
9.02
Сверхъяркие спиральные галактики — недостающее звено в теории эволюции
26.01
Джордж и его команда: к 70-летию горячей модели Вселенной
25.12
Сверхновая вспыхнула еще раз в назначенное время в назначенном месте

Научная картинка дня


Новости науки по темам: антропология, археология, астрономическая научная картинка дня, астрономия, биология, биотехнологии, генетика, геология, затмения, информационные технологии, космос, лингвистика, математика, медицина, нанотехнологии, наука в России, наука и общество, Нобелевские премии, палеонтология, Первое апреля, психология, технологии, физика, химия, эволюция, экология, энергетика, этология

Новости науки по авторам: Валентин Анаников, Дарья Баранова, Вера Башмакова, Александр Бердичевский, Максим Борисов, Варвара Веденина, Александр Венедюхин, Михаил Волович, Михаил Гарбузов, Алексей Гиляров, Дмитрий Гиляров, Сергей Глаголев, Евгений Гордеев, Николай Горностаев, Владимир Гриньков, Дмитрий Дагаев, Юрий Ерин, Анастасия Еськова, Дмитрий Жарков, Андрей Журавлёв, Дмитрий Замолодчиков, Игорь Иванов, Вячеслав Калинин, Павел Квартальнов, Мария Кирсанова, Дмитрий Кирюхин, Александр Козловский, Юлия Кондратенко, Артем Коржиманов, Ольга Кочина, Аркадий Курамшин, Виталий Кушниров, Иван Лаврёнов, Алексей Левин, Андрей Логинов, Сергей Лысенков, Лейла Мамирова, Александр Марков, Мария Медникова, Вадим Мокиевский, Григорий Молев, Тарас Молотилин, Антон Морковин, Марат Мусин, Максим Нагорных, Елена Наймарк, Алексей Опаев, Петр Петров, Александр Пиперски, Константин Попадьин, Сергей Попов, Роман Ракитов, Татьяна Романовская, Александр Самардак, Александр Сергеев, Андрей Сидоренко, Виктория Скобеева, Даниил Смирнов, Павел Смирнов, Дарья Спасская, Любовь Стрельникова, Алексей Тимошенко, Александр Токарев, Александр Храмов, Мария Шнырёва, Сергей Ястребов, Светлана Ястребова

Новости науки по месяцам: 2016 VII, VI, V, IV, III, II, I  2015 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2014 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2013 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2012 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2011 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2010 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2009 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2008 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2007 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2006 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2005 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I 

Новости науки почтой (рассылка на Subscribe.ru):

 


Где еще почитать научные новости: «Биомолекула», «Вокруг света», Газета.ру. Наука, «Наука и жизнь», Наука и технологии РФ, «Научная Россия», «Популярная механика», РИА Наука, «Чердак», N+1, Naked Science

 


при поддержке фонда Дмитрия Зимина - Династия