Элементы Элементы большой науки

Поставить закладку

Напишите нам

Карта сайта

Содержание
Энциклопедия
Новости науки
LHC
Картинка дня
Библиотека
Методология науки
Избранное
Публичные лекции
Лекции для школьников
Библиотека «Династии»
Интервью
Опубликовано полностью
В популярных журналах
Из Книжного клуба
Статьи наших друзей
Статьи лауреатов «Династии»
Выставка
Происхождение жизни
Видеотека
Книжный клуб
Задачи
Масштабы: времена
Детские вопросы
Плакаты
Научный календарь
Наука и право
ЖОБ
Наука в Рунете

Поиск

Подпишитесь на «Элементы»



ВКонтакте
в Твиттере
в Фейсбуке
на Youtube
в Instagram



Новости науки

 
23.09
Впервые получены структуры контактной и сольватноразделённой ионных пар силенил-литиевого соединения

21.09
В условиях антропогенного шума летучие мыши перестают полагаться на слух

20.09
Третий — не лишний: в большинстве лишайников присутствуют два гриба и водоросль

19.09
Муравьи помогают тлям сохранять разнообразие окраски

16.09
В эоценовых отложениях найдена змея, проглотившая ящерицу с жуком в желудке






Главная / Библиотека / Из Книжного клуба версия для печати

«На грани возможного». Глава из книги

Фрэнсис Эшкрофт


Азы физики

Лев Борисович ОКУНЬ

Азы физики

Очень краткий путеводитель


Книга адресована прежде всего специалистам-физикам, но некоторые её страницы должны быть понятны и любознательным школьникам.


1 Жизнь на вершине

Людей и гор союз — залог великих дел.
Уильям Блейк

Высота горы Эверест составляет 8848 м (29 029 футов). Это самая высокая гора в мире. Если мгновенно перенестись с уровня моря на ее вершину, человек потеряет сознание и впадет в кому из за недостатка кислорода. Тем не менее в 1978 г. двум австрийским альпинистам, Петеру Хабелеру и Райнхольду Месснеру, удалось совершить бескислородное восхождение на Эверест, а десять лет спустя их подвиг повторили уже больше 25 человек. Как удалось им всем совершить, казалось бы, немыслимое? Из этой главы мы узнаем, как велись поиски ответа на эту загадку. Она познакомит нас с радостью открытий, с немыслимыми подвигами на грани человеческих возможностей и с колоритными участниками этих подвигов.

Горы столетиями завораживали и манили своей неприступностью. Прекрасные и недосягаемые, они считались чертогами небожителей. Греческие боги обитали на горе Олимп, самой высокой вершине Греции; индийцы селили своих богов в Гималаях; в Андах найдены свидетельства древних человеческих жертвоприношений. Даже в наши дни у многих народов горы считаются священными — Тенцинг Норгей после первого удачного восхождения закопал на вершине Эвереста в дар обитающим там божествам шоколад и печенье. Горы овеяны мифами и легендами, их пики и расселины населяют не только боги, но и таинственные чудовища вроде гималайского йети или южночилийского трауко, питающегося человеческой кровью. Даже в их названиях есть что то от заклинаний: «Чимборасо, Котопакси, вы украли мою душу!» И все равно, вопреки (а может, благодаря) всем этим легендам горы продолжали притягивать людей — духовным обновлением, таинственными кладами, возможностью сбежать от гнета, исследовать новые земли или, более прозаично, открыть путь в соседнюю долину, а иногда, как сказал Джордж Мэллори, просто «потому что они есть».

Из этого следует, что с горной болезнью люди тоже знакомы не одну сотню лет. Причины ее возникновения оставались для древних загадкой, в ней видели кару богов (отнимающих у человека рассудок) либо связывали с отравлением ядовитыми парами растений. Тем самым горы в представлении европейцев делались еще таинственнее и опаснее. Однако где то ко второй половине XIX века альпинизм стал развиваться как спорт, и люди, борясь со стихиями и соревнуясь друг с другом, стремились во что бы то ни стало достичь заветных вершин. Физиологи проявляли все больший интерес к воздействию высокогорных условий на человеческий организм, все глубже проникая в их тайну, и эти исследования во многом способствовали успеху первых покорителей Эвереста. При этом ученых не раз поражала способность альпинистов расширять очерченные врачами границы возможного.

«Большие высоты» начинаются с 3000 м над уровнем моря. Цифра эта на самом деле взята практически с потолка. Немало жителей Земли — около 15 млн человек — обитают в горных районах даже выше этой отметки, особенно в Андах, Гималаях и на Эфиопском нагорье. Другие приезжают в высокогорные районы кататься на лыжах или ходят по горам в туристические походы. Самое высокогорное постоянное поселение на Земле — шахтерский поселок, расположенный на горе Ауканкильча в Андах, на отметке 5340 м. И хотя сами серные копи находятся на высоте 5800 м, шахтеры предпочитают каждый день преодолевать лишние 460 м подъема в гору, чем устраиваться там на ночлег. Индия, охраняя свою границу с Китаем, не один месяц держала войска на высоте 5490 м, но выше человек, по всей видимости, уже не способен находиться в течение долгого времени, поскольку жизнь на такой высоте чревата различными опасностями. Главная из них — пониженное содержание кислорода в воздухе, однако холод, обезвоживание и активное солнечное излучение тоже нелегко переносить.

Разреженность воздуха на больших высотах означает пониженное содержание кислорода, что представляет серьезную проблему для большинства организмов (в том числе и человека), нуждающихся в постоянном снабжении клеток кислородом. Сжигая кислород вместе с углеводами, клетки вырабатывают энергию. Клетки, производящие больше работы, например, мышечные, потребляют, соответственно, больше кислорода, а физическая активность только увеличивает их запросы. После того, как в 1775 г. открыли кислород (см. гл. 7), его благотворное влияние перестало быть тайной. Однако лишь сотню лет спустя француз Поль Бер выяснил, что именно кислородная недостаточность (гипоксия) является основной причиной горной болезни. Широкое признание его открытие получило еще позже.

Первые упоминания о горной болезни

Первыми воздействие высоты задокументировали китайцы в древней хронике Ханьшу, описывая поход из Китая в афганские земли в 37–32 гг. до н. э.: «Снова при переходе через Большую Болиголовную гору, Малую Болиголовную гору, Красные земли и Лихорадочный склон людей охватывает жар, бледность, нападает головная боль и тошнота. Ослы и скот страдают не меньше». Согласно предположению знаменитого синолога Джозефа Нидэма, древние китайцы воспринимали подобное явление как знак придерживаться исконных границ государства. Точно так же греки, обнаружив, что на вершине Олимпа (около 2900 м) становится трудно дышать, объявили ее чертогом небожителей, недоступным для простых смертных.

В числе первых четко изложить симптомы острой горной болезни удалось в 1590 г. отцу Хосе де Акоста, испанскому миссионеру-иезуиту, который, переходя через Анды, провел некоторое время на высокогорном плато, известном как Альтиплано. На высоком перевале Париакака (4800 м) болезнь сразила многих его спутников. Он и сам «испытал такой неожиданный и сокрушающий приступ, что чуть не упал без чувств», а также пришел к выводу, что «воздух здесь столь тонок и рассеян, что его не хватает для дыхания». Кроме того, на перевале и по всему горному хребту отмечались «странные недомогания, причем на одних участках больше, чем на других, и чаще у тех, кто поднимался с моря, а не с плато». Из этого замечания следует, что отец Акоста сознавал: человек, успевший адаптироваться к условиям высокогорья, проведя какое то время на горном плато, таком, например, как Альтиплано, менее подвержен горной болезни, чем те, кто поднимается непосредственно с уровня моря. Однако ученые сомневаются, что миссионер имел в виду именно это, поскольку оригинальный испанский текст, возможно, был переведен неправильно.

Зато местное население, инки, прекрасно знали и о воздействии высоты, и о том, что акклиматизация происходит постепенно. Наблюдая массовую гибель жителей равнин после резкого подъема на высоту для работы, например, в копях, они держали два войска — одно акклиматизированное на высокогорье, а второе — внизу, для сражений на равнинах. Спасаясь от конкистадоров, инки поднимались все выше и выше в горы, затрудняя преследователям задачу. И хотя испанцы в конце концов основали город Потоси на отметке 4000 м, он был, скорее, приграничным фортом, откуда женщин и скот пришлось возвращать на уровень моря для рождения и взращивания потомства на протяжении первого года жизни. На плодовитости местных женщин и выживаемости их младенцев высота не отражалась, тогда как отпрыски испанцев гибли при рождении или в первые две недели жизни. Первый младенец испанского происхождения, которому удалось выжить на высоте, родился лишь через 53 года после основания города, появившись на свет под Рождество 1598 г., и это чудо приписали святому Николаю Толентинскому. К сожалению, ни один из шести «осененных чудом» детей не дожил до зрелых лет. Однако уже через два-три поколения выносливость младенцев повысилась, возможно, также за счет смешанных браков испанцев с коренным населением. Скот и лошади, впрочем, по прежнему страдали массовым бесплодием, и в конце концов испанцы предпочли перенести столицу в Лиму. Младенческая горная болезнь встречается и в наши дни, например, у китайских колонистов, переселяющихся из низовий на склоны Тибета.

Как отмечали еще инки, горной болезни меньше подвержены те, кто приспосабливается к высотным условиям постепенно. Драматический и зачастую трагический исход резкого подъема на большую высоту первыми испытали ранние воздухоплаватели. Первый полет был осуществлен в 1783 г. Жаном-Франсуа Пилатром де Розье и маркизом д’Арландом на воздушном шаре, изготовленном братьями Этьеном и Жозефом Монгольфье. В том же году другой француз, Жак Шарль, сконструировал шар, наполняемый водородом, и поднялся на высоту 1800 м, не испытывая никаких признаков недомогания. Однако воздушные шары способны достигать и более высоких пределов, и там опасность дает о себе знать куда острее.

Симптомы горной болезни при воздухоплавании описаны в знаменитой статье метеоролога Джеймса Глейшера, который сопровождал Генри Коксуэлла в полете из Вулверхемптона в 1862 г. За час они поднялись на высоту, соответствующую по их барометру 247 мм рт. ст., то есть около 8850 м. Подъем на этом не закончился, однако точную высоту зафиксировать уже не удавалось, поскольку Глейшер перестал различать показания барометра, а возможно, их точность снизилась, поэтому не исключено, что конечная высота составила менее заявленных 11 000 м. Глейшер в подробностях описывает, как у него отнимались руки и ноги, он не мог разглядеть циферблат часов и своего спутника, язык не слушался его и наступила временная слепота. В итоге он потерял сознание. К счастью, Коксуэлл остался более дееспособным и смог опустить шар, хоть и с трудом, постепенно выпуская водород. Поскольку руки у него тоже отнялись, веревку клапана пришлось дергать зубами. В процессе спуска Глейшер пришел в себя и даже сумел продолжить записи с отметки в 8000 м, что свидетельствует о том, как быстро человек оправляется после тяжелого приступа гипоксии.

Первые несчастные случаи последовали несколькими годами позже, в 1875 г., когда трое французских ученых, Сивель, Тиссандье и Кроче-Спинелли, поднялись выше 8000 м на воздушном шаре под названием «Зенит». У них были при себе запасы кислорода, однако столь скудные, что воздухоплаватели договорились не использовать их без крайней необходимости. К несчастью, излишняя самоуверенность и вызванная острой кислородной недостаточностью эйфория привели к тому, что кислородом так и не воспользовались — все трое потеряли сознание. Выжил лишь Тиссандье. Позже он рассказывал, что пытался глотнуть кислорода из баллона, но не мог пошевелить руками. О своих ощущениях он писал так: «Страданий не испытываешь, напротив, ощущаешь ликование, наполняясь искрящимся светом. Проникаешься полным равнодушием и перестаешь видеть опасность положения».

Подъем на Эверест

С расцветом альпинизма о проявлениях горной болезни стало известно больше и эта проблема стала исследоваться глубже. К середине 1920-х было установлено, что человек может подняться на высоту 8000 м и пробыть там несколько дней при условии, что до этого он не одну неделю проведет на промежуточных высотах, постепенно акклиматизируясь. При таком же давлении, смоделированном в декомпрессионной камере, человек терял сознание через несколько минут.

Участники британской экспедиции 1953 г. на Эверест под руководством сэра (впоследствии лорда) Ханта отлично понимали необходимость акклиматизации. Долгий переход от Катманду до Кхумбу, расположенного у подножия Эвереста, продолжался несколько недель и обеспечил необходимый адаптационный период, поскольку большая часть маршрута пролегает на высоте 1800 м, изредка поднимаясь до 3600. Еще четыре недели ушли на акклиматизацию в районе Кхумбу (4000 м), и только потом начался штурм склона. Кроме того, группа взяла за правило становиться лагерем на высоте, где можно спокойно есть и спать, а затем спускаться на несколько дней для отдыха и восстановления сил на предыдущий уровень. Вслед за ними так поступает и большинство современных экспедиций, и, как мы еще увидим, для этого существуют веские физиологические основания.

Кроме того, в этой экспедиции впервые широко применялись дополнительные источники кислорода. Раньше кислородом пользовались неохотно — альпинисты не слишком доверяли новому и слишком громоздкому снаряжению. Выше отметки в 6500 м участники экспедиции на Эверест стали пользоваться кислородными баллонами во время сна (1 л в минуту) и при восхождении (4 л в минуту). Однако, несмотря на такую поддержку, высота все равно давала о себе знать постепенным ухудшением самочувствия и потерей веса. Иногда, как подробно описывает Хант, дееспособность падала катастрофически:

«Наш подъем становился все медленнее, все изнурительнее. Каждый шаг давался с трудом и требовал напряжения воли. После нескольких медленных, как на похоронах, шагов нужен был отдых, чтобы набраться сил. По причине, обнаруженной мною лишь впоследствии, я дышал уже с трудом и широко открытым ртом ловил воздух <...> Казалось, мои легкие сейчас разорвутся. Со стонами я боролся за каждый глоток воздуха, теряя при этом ужасном и жестоком испытании всякое самообладание» 1.

Причина подобных мучений была выявлена позже. Как оказалось, трубка, соединяющая респиратор Ханта с кислородным баллоном, полностью забилась льдом, поэтому кислород не проходил, и Хант, таща на себе тяже­ленный прибор, не получал он него никакой пользы. Тем не менее в своем отчете об экспедиции Хант пишет: «Среди нашего многочисленного снаряжения я должен особенно отметить кислородную аппаратуру. <...> Главную роль в достижении успеха сыграли, по моему, кислородные аппараты. Не будь мы снабжены высококачественной кислородной аппаратурой, нам, без сомнения, не удалось бы достичь вершины».

Весть о покорении Эвереста 29 мая 1953 г. Эдмундом Хиллари и шерпом Тенцингом Норгеем достигла Лондона 2 июня, как раз ко дню коронации Ее Величества королевы Елизаветы. Объявленная через громкоговорители по всему пути следования королевского кортежа, она вызвала всеобщее ликование. Находившиеся в базовом лагере члены экспедиции, услышав новость о своем подвиге по общенациональному радио AIR, очень удивились, поскольку репортер Times Джеймс Моррис покинул лагерь с материалом для статьи буквально накануне, 30 мая.

После успешного использования кислородных аппаратов при штурме Эвереста сложилось мнение, что выжить на вершине без дополнительного кислорода невозможно. Гриффит Пью, физиолог в составе первой экспедиции, покорившей Эверест, утверждал, что «лишь исключительному человеку под силу подняться выше 8200 м без дополнительного кислорода». Его выводы подтверждались трагическими случаями, когда лучшие альпинисты, теряя равновесие от изнеможения, вызванного гипоксией, разбивались насмерть. Однако упорство и настойчивость альпинистов, как нередко случалось в высокогорной физиологии, опровергли неутешительные выводы физиологов. В 1978 г. Петер Хабелер и Райнхольд Месснер совершили бескислородное восхождение на Эверест. Впоследствии их подвиг повторили и другие, в том числе в 1988 г. первая среди покорителей Эвереста женщина, Лидия Брейди (правда, она штурмовала Эверест в одиночку, поэтому некому было подтвердить, что она действительно достигла вершины).

Все эти примеры свидетельствуют, что нужно различать физиологические последствия резкого подъема на высоту (например, при полете на воздушном шаре или при разгерметизации самолета) и постепенного восхождения, типичного для неспешного штурма горной вершины, когда отводится достаточно времени на акклиматизацию. Отдельным, третьим аспектом следует рассматривать последствия долговременного проживания на большой высоте.

Падение барометрического давления

Первым наличие веса у воздуха обнаружил Эванджелиста Торричелли. В 1644 г. он писал коллеге: «Мы живем на самом дне океана, состоящего из воздуха, который, согласно неоспоримым экспериментальным данным, имеет вес». Торричелли, ученику Галилея, также принадлежит честь создания первого ртутного барометра для измерения атмосферного давления (давления, создаваемого весом самого воздуха).

Уменьшение плотности воздуха по мере набора высоты означает уменьшение атмосферного давления. Впервые это продемонстрировал Блез Паскаль в своем «Великом эксперименте» на горе Пюи де-Дом. Проще говоря, чем выше мы поднимаемся, тем меньше давление, поскольку сокращается величина давящего на нас атмосферного столба.

До самого недавнего времени атмосферное давление измерялось в торрах — единицах, названных в честь Торричелли. Теперь в официальном обращении торры вытесняет другая единица, получившая, как ни парадоксально, свое имя в честь француза Паскаля. Однако поскольку в ранних работах использовались торры и физиологи по прежнему оперируют именно ими, я тоже последую их примеру.

На уровне моря атмосферное (или барометрическое) давление составляет около 760 торр (миллиметров ртутного столба). Воздух состоит на 21% из кислорода, на 0,04% из углекислого газа, остальное приходится большей частью на азот. Поэтому на уровне моря давление кислорода (так называемое парциальное или частичное) равно 159 торрам (21% от 760 торр). На вершине Эвереста доля кислорода в воздухе остается такой же, но поскольку барометрическое давление падает примерно до 250 торр, парциальное давление кислорода падает соответственно. Кроме того, парциальное давление кислорода в легких снижается еще сильнее, чем в атмосфере. Этот удивительный факт объясняется тем, что в организме содержится большое количество водяного пара. Его присутствие в альвеолах (легочные пузырьки, где происходит газообмен между легкими и кровью) сокращает объемы кислорода, что на высоте как нельзя более ощутимо.

На любой высоте воздух в легких пропитан водяным паром, образующимся в организме. Особенно хорошо это видно на холоде, когда в результате выдоха возникает облачко пара. Парциальное давление этих паров — 47 торр. Это значит, что при атмосферном давлении в 47 торр, соответствующем высоте в 19 200 м, легкие целиком заполнятся паром, не оставляя места для кислорода и других газов. Таким образом, доля давления газа в легких, приходящаяся на водяной пар, возрастает по мере набора высоты — с 6% на уровне моря до 19% на вершине Эвереста.

Присутствие пара в альвеолах объясняет, почему парциальное давление кислорода в этих воздушных пузырьках ниже, чем в атмосфере (кроме того, кислород постоянно расходуется на нужды организма). Этим же фактором определяется физический предел высоты, которой может достичь человек, даже дыша чистым кислородом. Нижняя граница барометрического давления, при котором поддерживается нормальная концентрация кислорода в легких (100 торр), при дыхании чистым кислородом соответствует примерно 10 400 м, что равно высоте полета большинства пассажирских лайнеров. На большей высоте выжить тоже можно, поскольку при учащенном дыхании выпускается больше углекислого газа и освобождается место под кислород. Однако уже на высоте 12 200–13 700 м кислорода вырабатывается недостаточно, и человек теряет сознание. Выше 18 900 м при температуре тела кровь «закипает», т. е. фактически испаряется. Тем самым объясняется, почему для подобных высот и космических путешествий необходим герметичный скафандр или капсула с автономной системой подачи воздуха (см. гл. 6).

Чем опасна неожиданная разгерметизация

«В случае внезапной разгерметизации кислородные маски выпадают автоматически». В последние 25 лет популярность авиаперелетов неуклонно растет, поэтому фраза эта знакома практически каждому, хотя, к счастью, мало кому пришлось применить это знание на практике. Большинство пассажирских перелетов совершаются на высоте около 10 400 м. Если на этой высоте выбить стекло, мы услышим громкий хлопок вырывающегося из кабины воздуха — внутреннее давление уравновесится с внешним. Непристегнутые предметы и людей вытянет за борт, а кабина наполнится мелкой водяной взвесью, поскольку температура тоже сравняется с наружной и в воздухе сконденсируется водяной пар. Поэтому кислородную маску важно надеть мгновенно, ведь уровень кислорода в легких моментально упадет, и в течение 30 секунд вы потеряете сознание. «Полезное» время, за которое пилоту придется предпринимать какие то действия, и того меньше — 15 секунд. Одного капитана воздушного судна погубило то, что он не успел надеть кислородную маску, наклонившись за упавшими очками. К счастью, второй пилот оказался расторопнее.

Парциальное давление кислорода в легких на высоте 10 400 м при дыхании несжатым воздухом составляет около 20 торр — это слишком мало для жизни. При дыхании чистым кислородом оно возрастает до 95 торр. Этого хватит, чтобы выжить, если вы будете сидеть смирно, не тратя энергии, поэтому экипаж учат в подобных ситуациях сидеть спокойно, пока самолет не опустится на более приемлемую высоту (а кроме того, еще и потому, что снижение в таких случаях проводят резкое, чтобы опуститься побыстрее).

Падение дееспособности на больших высотах погубило немало людей в начале Второй мировой войны. Если на высоте 5500 м хвостовой стрелок бомбардировщика, дышавший воздухом в своей пулеметной турели, чувствовал себя вполне бодрым, то при попытке перебраться в головную часть многие теряли сознание. Это происходит потому, что работающие мышцы потребляют больше кислорода, чем организм может получить из разреженного воздуха, и оставшегося кислорода не хватает на обеспечение нужд мозга. Однако в спокойном сидячем положении можно подняться в негерметизированной кабине, не теряя сознания, до 7000 м, что, надо отметить, значительно уступает высоте Эвереста.

Куда коварнее внезапной разгерметизации медленное падение давления в кабине, поскольку постепенное снижение содержания кислорода в воздухе замечается не сразу. Пилот, не подозревая об опасности, может не успеть предпринять необходимые шаги. Как подробно описывали первые воздухоплаватели, кислородное голодание вызывает эйфорию, рассеянность и неверную оценку обстановки. В итоге наступает мышечная слабость, потеря сознания, затем кома и смерть. Все это вызвано неспособностью организма достаточно быстро реагировать на снижение доли кислорода в воздухе на больших высотах.

Официальный предел для полета в негерметизированной кабине без кислорода — 3000 м, хотя кислородом пользуются начиная с 2400 м, для перестраховки. В салонах пассажирских самолетов создается давление, соответствующее высоте 1500–2400 м над уровнем моря, поскольку, чтобы обеспечить более высокое давление, пришлось бы значительно увеличивать вес фюзеляжа и тратить слишком много мощности двигателей на наддув. Кроме того, в этом нет необходимости, поскольку на такой высоте парциальное давление кислорода достаточно для нормального насыщения им крови. Однако страдающие легочными или сердечными заболеваниями могут не справиться с понижением уровня кислорода, и им потребуется в полете кислородный баллон. Именно из за перепадов давления (когда внутреннее давление в кабине приводится в соответствие с внешним) у нас закладывает уши при взлете и посадке на уровне моря (подробнее об этом см. гл. 2).

В отличие от пассажирских самолетов, многие истребители не герметизируют или герметизируют слабо, создавая давление, соответствующее 7600 м над уровнем моря, поскольку более сильная герметизация потребует увеличения веса и лишит истребитель маневренности. Поэтому летчикам приходится надевать плотно прилегающую маску и дышать смесью воздуха с чистым кислородом. Смесь регулируется автоматически в зависимости от высоты, снабжая летчика кислородом в достаточном количестве, не вызывающем кислородного опьянения (см. гл. 2). Выше 11 500 м подается под давлением чистый кислород. Дышать сжатым воздухом непривычно — в отличие от нормального дыхания, когда вдох представляет собой активный процесс, а выдох происходит при расслаблении мышц грудной клетки, сжатый воздух заполняет легкие сам, а вот выдыхать его приходится с усилием. Поэтому такое дыхание — достаточно трудоемкий процесс. Кроме того, при слишком сильном «наддуве» легкие может разорвать — как ту лягушку в эзоповой басне, что пыжилась, пока не лопнула. Однако если на стенки грудной клетки будет обеспечено давление извне, легкие могут выдержать больший «наддув», поэтому пилоты истребителей облачаются в специальный костюм. По сути, это плотно облегающий комбинезон, который при низком давлении накачивается воздухом в районе грудной клетки и живота. Его используют военные летчики, поднимающиеся выше 12 000 м, чтобы спастись в случае полной разгерметизации (если, например, корпус истребителя пробьет шрапнелью). Аналогичный костюм надевала Джуди Леден, когда в 1996 г. спускалась на дельтаплане с воздушного шара, поднявшегося на высоту 12 000 м над Иорданской пустыней, тем самым побив мировой рекорд высоты для дельтапланеристов.

Гражданские самолеты конструируются таким образом, чтобы в случае разгерметизации окна воздух выходил не так быстро и давление падало постепенно (именно поэтому иллюминаторы на «Конкордах» такие маленькие). Однако если снаряд попадет в истребитель или летчику придется катапультироваться, разгерметизация произойдет в считанные секунды. Поэтому летчиков учат правильно выдыхать в процессе разгерметизации, чтобы легкие не разорвало от резкого притока воздуха. Кроме того, им грозит «кессонная болезнь», возникающая, когда растворенные в крови и тканях организма газы при низком давлении выделяются из раствора в виде пузырьков. Ощущения и опасность при разгерметизации на большой высоте сходны с опасностью, подстерегающей ныряльщиков, всплывающих с глубины на поверхность (более подробно об этом см. в гл. 2).

В отличие от большинства пассажирских самолетов, «Конкорд» летает в эшелоне 15 000–18 000 м. Даже при дыхании чистым кислородом под давлением эта высота сильно превышает достаточный для выживания порог (составляющий около 14 000 м). Как мы уже знаем, из за низкого барометрического давления на таких высотах легкие просто не вмещают необходимое количество кислорода. Кроме того, этот эшелон близок к высоте в 18 900 м, на которой кровь и прочие жидкости организма начинают «закипать» при температуре тела. Поэтому внезапная разгерметизация кабины «Конкорда», скорее всего, приведет к летальному исходу, но многие пассажиры даже не догадываются об этом, пребывая в счастливом неведении.

Острая горная болезнь

Если разгерметизация самолета — чрезвычайная ситуация, в которой довелось побывать очень немногим, то воздействие горной болезни, учитывая растущую популярность и доступность экстремального туризма, испытало на себе гораздо большее количество людей. Поход к подножию Эвереста стал массовым туристическим маршрутом, восхождение к базовому лагерю уже совершили тысячи неопытных любителей, а на склонах горы регулярно проводится марафонский забег. В Андах каждый год не меньшее число туристов проходят Тропой инков, ведущей от Куско к древнему городу Мачу-Пикчу по головокружительным перевалам на высоте 4500 м. Поскольку до Анд можно добраться и напрямую — поездом или самолетом, горная болезнь там не редкость. Тем, кто прибывает самолетом в Ла-Пас, столицу Боливии, расположенную на отметке 3500 м над уровнем моря, настоятельно рекомендуют не перенапрягаться в первые дни, и все равно каждый год несколько бизнесменов умирает от сердечного приступа или тромбоза, вызванного высокогорными условиями.

Симптомы горной болезни обычно отмечаются у жителей равнин при подъеме на высоту более 3000 м, однако со временем большинство людей адаптируется. Но выше 4800–6000 м (уровень самых высокогорных поселений в Андах и Гималаях) акклиматизации уже не происходит и дееспособность постепенно ухудшается. Даже для самых акклиматизированных подъем выше 7900 м чреват серьезными опасностями. Альпинисты называют этот уровень «мертвой зоной», поскольку длительное пребывание на такой высоте вызывает стремительное ухудшение здоровья. Именно поэтому базовый лагерь разбивается на более низкой отметке, а оттуда совершается марш-бросок на вершину, с расчетом пробыть выше 7900 м как можно меньше.

Горная болезнь развивается в течение 8–48 часов после быстрого подъема на большую высоту. Начинается она с легкого головокружения, часто эйфории, человек будто пьянеет от разреженного воздуха. Однако через несколько часов эйфория спадает и наваливается непонятная усталость. Идти, хоть и с трудом, еще как то удается, о беге не может быть и речи. Перед глазами плывет, человек теряет равновесие. Заснуть тяжело, ночью постоянно просыпаешься, испытывая при этом неприятное ощущение, будто тебя душат. К этому добавляется сильная головная боль, потеря аппетита, тошнота и даже рвота. Нередки кровоизлияния в капиллярных сосудах сетчатки глаза (впрочем, потом капилляры без последствий заживают).

У большинства людей эти неприятные симптомы пропадают через несколько дней. Однако иногда горная болезнь может привести к отеку легких (скоплению в них жидкости). В некоторых случаях развивается отек мозга — больной испытывает при этом головную боль, потерю равновесия, сильное желание лечь и ничего не делать. После этого быстро наступает кома и смерть. Кислород может облегчить состояние как при горной болезни, так и при отеках мозга и легких, но единственное по настоящему действенное лекарство — спуститься с опасной высоты. Заплатить проводнику, чтобы он отнес вас выше в горы, как поступали некоторые туристы в Гималаях, — самая что ни на есть фатальная ошибка.

Красочное описание горной болезни составил на основе собственного опыта Эдвард Уимпер. Он и двое его проводников, Жан-Антуан и Луи Каррель, испытали на себе пагубное воздействие разреженного воздуха на высоте 5000 м при восхождении на Чимборасо в 1879 г.

«Где то через час я обнаружил, что вместе с обоими братьями Каррелями лежу на спине, будто нокаутированный, не в силах пошевелиться. Мы поняли, что враг не дремлет и что мы переживаем первый приступ горной болезни. У нас начался жар, головная боль, не хватало воздуха, как следует вдохнуть удавалось только ртом. От этого сразу же пересыхало горло. <...> Даже участившееся дыхание казалось недостаточным, мы то и дело судорожно хватали воздух ртом, будто рыбы, выброшенные на берег».

Около 40% туристов, поднимаясь в пеших походах выше 4000 м, подвергаются в той или иной степени воздействию горной болезни, хотя и менее суровому, чем у Уимпера и братьев Каррелей. Предсказать, кто падет ее жертвой, крайне сложно, поскольку она не зависит от физической подготовки и может скрутить парашютиста-разрядника, совершенно не тронув его хрупкую бабушку. Причины острой формы горной болезни еще не до конца изучены, однако в числе важных факторов приводятся снижение содержания кислорода в крови и уменьшение кислотности крови (см. ниже). Некоторые ученые полагают, что в совокупности эти факторы вызывают перераспределение жидкостей в организме и ведут к слабо выраженному отеку мозга. Предположение подтверждается измерениями мозгового кровотока, проведенными на высоте 5300 м.

Отек легких, когда легкие переполняются жидкостью, возникает вследствие реакции кровеносных сосудов легких на снижение уровня кислорода на больших высотах. На уровне моря низкое содержание кислорода в отдельном легочном пузырьке (альвеоле) обычно означает, что приток воздуха затруднен. Ввиду невозможности провести кровь через эту альвеолу прилегающий кровеносный сосуд сжимается, перекрывая кровоток и перенаправляя его в другую, лучше вентилируемую область. К сожалению, сосуды не различают снижение уровня кислорода в альвеолах из за блокирования дыхательных путей и спада парциального давления кислорода во вдыхаемом воздухе. Поэтому на большой высоте они сокращаются в любом случае. Однако одни сосуды более чувствительны к перепадам уровня кислорода, чем другие, поэтому сосудистый спазм происходит неравномерно. В результате усиливается кровоток в свободных капиллярах, приводя к повышению кровяного давления в легких. Из капилляров выделяется жидкость, которая затем скапливается в альвеолах или между ними. Примерно то же самое происходит, когда отверстия в душевой лейке забиваются известковым налетом — напор воды в свободных отверстиях неизменно возрастает. Поскольку через гиперчувствительные (а значит, сократившиеся) капилляры жидкость не проходит, отек происходит неравномерно — как точно подметил один эксперт, «отекшее легкое похоже на мешок с пушечными ядрами».

Жидкость в альвеолах препятствует газообмену. Дыхание становится затрудненным, в нижних сегментах легких слышатся хрипы — это, судя по всему, переливается во время дыхания жидкость. Если отек вовремя не устранить, больной просто «утонет» в жидкости, скапливающейся в легких. Отек легких грозит прежде всего тем, кто, стремительно поднявшись на высоту 3000 м, сразу же подвергает организм большим физическим нагрузкам. Если подниматься постепенно и выждать некоторое время в покое, вероятность отека практически исключена.

Для альпинистов и тех, кто постоянно живет и работает на большой высоте, дееспособность — крайне важный фактор. И разумеется, чем больше человек трудится (чем быстрее поднимается), тем больше ему необходимо кислорода. У равнинных жителей работоспособность с высотой стремительно падает: на отметке 7000 м она составляет едва ли 40% от показателей на уровне моря. Без кислорода темп восхождения существенно замедляется: в 1952 г. у Раймонда Ламберта и Тенцинга Норгея ушло пять с половиной часов на прохождение 200 м по Южному седлу Эвереста, а на вершине горы Райнхольд Месснер с Петером Хабелером через каждые несколько шагов падали в снег от изнеможения, поэтому последние 100 м они преодолевали больше часа.

«Через каждые несколько шагов мы обессиленно повисаем на ледорубах, судорожно разевая рот, отвоевывая необходимый для мышц воздух. <...> На высоте 8800 м мы уже не можем держаться на ногах во время передышек. Мы падаем на колени, цепляясь за ледорубы. <...> Через каждые десять-пятнадцать шагов валимся в снег отдохнуть, затем ползем дальше».

Похожие затруднения не прошедший акклиматизацию человек испытывает и на более низких высотах, тогда как постоянные обитатели этих высот снижением работоспособности не страдают. Прибывая в Ла-Пас самолетом, путешественники ощущают мгновенный упадок сил из за разреженного воздуха, тогда как местные, к изумлению (и зависти) гостей, бегают в тех же условиях марафоны.

Вдох — выдох

Попадая на большую высоту, вы прежде всего замечаете, как учащается дыхание. Это резкая и непосредственная реакция организма на уменьшение парциального давления кислорода в воздухе, обеспечивающая приток большего количества кислорода к тканям. Вызывается она хеморецепторами (каротидными тельцами), находящимися в сонных артериях, которые, чувствуя понижение уровня кислорода в крови, дают дыхательному центру мозга сигнал участить дыхание. Каротидные тельца расположены в стратегически важных точках, поскольку они отслеживают содержание кислорода в крови, поступающей в мозг. Механизм, с помощью которого они распознают перепады уровня содержания кислорода, до сих пор является предметом научных споров.

Поначалу дыхание учащается незначительно — не более чем в 1,65 раза по сравнению с частотой на уровне моря, даже на высоте 6000 м. Это происходит потому, что гипервентиляция легких не только повышает потребление кислорода, но и вызывает больший расход CO2 на выдохе. Углекислый газ образуется в организме в весьма значительных количествах как побочный продукт обмена веществ. В растворе он дает углекислоту, и объем выдыхаемого человеком газа приравнивается к 12,5 л углекислоты в промышленной концентрации (точнее, 12,5 моля ионов водорода) в сутки. Производимый в тканях углекислый газ переносится клетками крови в легкие и оттуда выделяется в воздух. Таким образом, его концентрация в альвеолах варьируется в зависимости от частоты дыхания: при учащенном дыхании углекислого газа выбрасывается больше, тем самым уменьшается его содержание в альвеолах и крови.

Углекислый газ выступает мощным регулятором дыхания (воздействуя на еще одну группу хеморецепторов, расположенных в мозге), и если его содержание в крови падает, дыхание затрудняется. Можете проверить сами, и вы обнаружите, что способны задержать дыхание на более долгий промежуток времени, если до этого сделаете серию частых выдохов. (Только не переусердствуйте — если дышать так больше минуты, может закружиться голова.) Дело в том, что задержка дыхания регулируется не столько потребностью в кислороде, сколько возрастанием процента углекислого газа в крови. Когда он достигает критической отметки, организму требуется вдох. Гипервентиляция перед задержкой дыхания удаляет из организма избыток CO2 и позволяет отсрочить момент, когда он снова накопится до предела, побуждающего сделать вдох. Противоположное воздействие кислорода и углекислого газа на организм объясняет, почему на высотах ниже 3000 м никаких изменений в характере дыхания не происходит.

Переключение с кислородной регуляции дыхания на углекислотную не всегда протекает гладко и может приводить к «скачкам» и перепадам, как бывает в плохо отрегулированной отопительной системе. При этом человек то дышит, то не дышит, пугаясь сам и пугая тех, кто рядом. Чаще всего это происходит ночью. Объясняются такие перепады тем, что учащенное дыхание, вызванное низким содержанием кислорода в воздухе, приводит к повышенному сбрасыванию углекислого газа легкими, и дыхание останавливается. Затем в течение какого то времени углекислый газ снова накапливается в крови, снимая блокировку, и одновременно возрастает потребность в кислороде. Задержку дыхания прерывает резкое заглатывание воздуха — иногда настолько резкое, что человек просыпается, и весь цикл идет по следующему кругу. Эти постоянные пробуждения очень затрудняют существование на высоте, поэтому у альпинистов выработался принцип: «Лезь повыше, спи пониже».

Сокращение доли кислорода в крови, вызванное учащенным дыханием, приводит к уменьшению водородного показателя крови («уменьшению кислотности крови», «увеличению pH крови» или «увеличению щелочности крови», другими словами). Происходит это потому, что углекислый газ соединяется с водой, образуя двууглекислую соль и ионы водорода, а в качестве катализатора реакции выступает фермент под названием карбоангидраза. Предполагают, что частота дыхания регулируется именно ионами водорода, получаемыми в результате этой реакции, а не собственно углекислым газом. Хеморецепторы, улавливающие изменение содержания ионов водорода, расположены в основании головного мозга, на участке под названием «продолговатый мозг».

Почему же человеческое дыхание регулируется прежде всего углекислым газом, а не кислородом? Скорее всего потому, что наш организм развивался в процессе эволюции в основном на уровне моря, и люди очень редко забирались в высокогорье. На уровне моря кислорода в легкие поступает гораздо больше, чем требуется, даже при сильно затрудненном дыхании. С другой стороны, частота дыхания очень сильно влияет на содержание углекислого газа в легких и тканях, и крайне важно, чтобы она соответствовала содержанию газа в организме. Поэтому главным регулятором дыхания выступает именно углекислый газ.

Акклиматизация

Когда человек только попадает на большую высоту, дыхание сперва учащается незначительно, однако уже через неделю или около того учащение станет более ощутимым, а через две-три недели превысит норму в пять-семь раз. Это повторное учащение дыхания — самый важный аспект адаптации к высокогорным условиям, оно определяет, как высоко человек сможет забраться. Чем чаще и глубже мы дышим, тем больше поглощаем кислорода и тем выше можем подняться.

В результате акклиматизации снимается блокировка дыхания, вызываемая снижением количества углекислого газа в крови и сопутствующим уменьшением кислотности крови. В этом случае, конечно, необходимо восстановление кислотности крови, и этим занимаются почки. Несмотря на то что данная функция почек несомненно важна для долговременной акклиматизации, этого недостаточно, поскольку процесс протекает слишком медленно, и воздействие ее слишком незначительно, чтобы вызвать учащение дыхания сразу при попадании на высоту. Значит, должен происходить еще какой то дополнительный (но пока не изученный) процесс (наблюдается как повышенная чувствительность каротидных телец к низкому содержанию кислорода, так и постепенное восстановление кислотности жидкости, окружающей центральные хеморецепторы мозга). Кажется удивительным, что механизм, ответственный за столь важное явление, как повторное учащение дыхания, до сих пор окончательно не изучен. Тем не менее, он дает физиологам отличный повод покорять горные вершины и заниматься его изучением вплотную.

В гипервентиляции и надо искать ответ на вопрос, как акклиматизированному альпинисту удается выжить на вершине Эвереста без дополнительного кислорода. Как подметил Райнхольд Месснер, достигнув вершины, он «весь был одно большое судорожно дышащее легкое». При учащенном дыхании стравливается больше углекислого газа, уменьшая тем самым парциальное давление CO2 в легких и высвобождая больше места для кислорода. Установлено, что у самых опытных альпинистов по мере подъема парциальное давление углекислого газа в легких падает очень значительно — на вершине Эвереста оно составляет всего 10 торр (по сравнению с 40 торрами на уровне моря). Однако не у всех получается достаточно акклиматизироваться и обеспечить такое разительное учащение дыхания, чтобы настолько снизить уровень углекислого газа, и далеко не каждый способен выдержать сопутствующий спад кислотности крови. Этим людям никогда не добраться до вершины, поскольку при невозможности сбрасывать лишний углекислый газ в легких не высвободится достаточного пространства под кислород. Даже при успешном восхождении альпинисту требуется значительный период акклиматизации, чтобы организм приспособился к существованию при пониженном уровне углекислого газа.

Парциальное давление кислорода в легких хорошо акклиматизированного альпиниста, стоящего на вершине Эвереста, составляет около 36 торр — это практически предел для человеческого организма. Любопытное совпадение, но самая высокая на земле горная вершина является также самой высокой точкой, на которой человек способен выжить без дополнительных средств поддержания жизнедеятельности. Поскольку Эверест — это фактически максимальная отметка, которой мы способны достичь, даже незначительные колебания в атмосферном давлении, вызванные, например, сменой времен года, могут повлиять на успех бескислородного подъема.

Другой очевидный способ доставить больше кислорода к тканям — повысить транспортную способность крови. У некоторых животных кислород в крови переносится просто в растворе. Однако объем кислорода, который можно транспортировать таким способом, крайне мал, поэтому организм большинства животных (включая и человека) использует для этой цели молекулы белка. Поскольку белки эти обычно окрашены, их называют «дыхательными пигментами». У большинства млекопитающих за транспортировку кислорода отвечает гемоглобин. Он состоит из четырех одинаковых субъединиц, в центре каждой из которых находится атом железа. К нему с двух сторон цепляется по одной молекуле кислорода. Поскольку сам гемоглобин достаточно мал, чтобы просочиться через почечные фильтры в мочу, он заключен в эритроциты, которые за его счет и получают свой красный цвет. Красная моча — признак гемоглобинурии (если, конечно, вы не переели свеклы накануне).

Одним из первых признаков долговременной адаптации к высокогорным условиям служит значительное увеличение количества эритроцитов (а значит, и содержание гемоглобина). Вызывается оно эритропоэтином — гормоном, который вырабатывается в почках в ответ на низкое содержание кислорода в крови. Судя по всему, экспрессия гена эритропоэтина и последующая выработка гормона происходит из за недостатка кислорода. Механизм этот еще не изучен полностью, однако полагают, что в самом гене (в ДНК) содержится сенсор, улавливающий содержание кислорода в клетке. Количество эритроцитов в кровеносной системе благодаря эритропоэтину увеличивается в срок от трех до пяти дней после прибытия на высоту и продолжается в течение всего времени пребывания. Объем крови, занимаемый эритроцитами (так называемый гематокрит), составляет у равнинного жителя около 40%, но после акклиматизации он может вырасти и до 60%.

Спортсмены часто тренируются на высоте, чтобы повысить количество эритроцитов и способность крови переносить кислород, хотя теперь некоторые вместо этого дышат воздухом с пониженным содержанием кислорода во время сна или принимают синтетический эритропоэтин (см. гл. 5). У людей с хроническими заболеваниями легких, испытывающих затруднения при дыхании (и страдающих от гипоксии), также часто наблюдается повышенное содержание эритроцитов в крови, даже на уровне моря.

Несмотря на то, что увеличение количества эритроцитов повышает способность крови переносить кислород к тканям, оно одновременно повышает и вязкость крови, затрудняя работу сердца по ее перекачке. В настоящее время считается, что увеличение гематокрита приносит мало пользы (кто бы еще сообщил об этом спортсменам), и подтверждает данную точку зрения тот факт, что по количеству эритроцитов кровь лам и других высокогорных животных не отличается от крови обитателей низин. И действительно, если плотность эритроцитов слишком возрастает, последствия могут быть пагубными. Карлос Монхе еще в 1925 г. первым заметил, что у некоторых людей, проживших всю жизнь в горах, возникают симптомы, сходные с признаками острой горной болезни. Они жаловались на головную боль, головокружение, хроническую усталость, в некоторых случаях доходило до сердечной недостаточности или инсультов. Гематокрит у них достигал 80%. Даже в нынешние времена у некоторых коренных жителей Ла-Паса (3500 м над уровнем моря) встречается цианоз (посинение губ и ногтей), а также утолщение концевых фаланг пальцев, характерное для болезни Монхе. Происходит это из за застоя эритроцитов в капиллярах, которое приводит к замедлению скорости тока крови, а значит, и поставки кислорода к тканям. Облегчает состояние спуск с высокогорья, поэтому страдающие болезнью Монхе обречены всю жизнь существовать исключительно на уровне моря. Почему их организм вдруг теряет способность адаптироваться к высоте и почему такая болезнь чаще возникает у мужчин, чем у женщин, остается загадкой.

Самые важные факторы адаптации к большим высотам — это разительное увеличение частоты и глубины дыхания, почечная регуляция кислотности крови и снижение чувствительности к воздействию углекислого газа. Эти адаптивные механизмы обеспечивают нам возможность не только выжить, но и активно двигаться на вершине Эвереста без дополнительного кислородного оборудования.

Уроженцы равнин, перебирающиеся на высокогорье во взрослом возрасте, никогда не достигнут уровня акклиматизации тех, кто обитает там всю жизнь, даже если проживут в горах долгие годы. У коренных жителей высокогорья грудная клетка гораздо шире и бочкообразнее, соответственно больше и объем легких. Сами они при этом не особенно рослые, поэтому у них более высокие показатели отношения объема легких к размерам тела. Сердце у них тоже крупнее, чем у жителей равнин, и оно эффективнее перекачивает кровь; сеть капилляров в легких и тканях гуще, что облегчает процесс усвоения и доставки кислорода. Этими анатомическими особенностями объясняется, почему работоспособность у горцев выше, чем у низинных жителей, даже хорошо акклиматизированных. Здоровые молодые европейцы, отправляющиеся в пешие походы по Гималаям, приходят в невероятное изумление (и смущение), видя, как пожилые носильщики или молодые девушки-шерпы без особых усилий справляются с поклажей, которую они, европейцы, и поднять то не могут, не говоря уж о том, чтобы нести на протяжении многих миль.

Эти адаптационные особенности у горцев частично врожденные, частично приобретенные, поскольку у детей низинных жителей, родившихся и выросших на высокогорье, объем легких тоже увеличивается, однако грудная клетка, как у некоторых коренных народов Анд, бочкообразной не становится.

Уроки больших высот

История высотной физиологии полна недооценки человеческих способностей. Физиологи неоднократно заявляли, что человек не способен подняться выше определенной отметки, но альпинисты постоянно эти заявления опровергали. Этот парадокс служит отличной иллюстрацией того, как в принципе развивается наука.

Началось с того, что ученые неверно определили атмосферное давление на высоте Эвереста. Первые исследователи доказали, что оно возрастает с повышением температуры (поскольку давление газа зависит от скорости, с которой молекулы бомбардируют окружающие объекты). С осовением авиации возникла необходимость выработать стандартный метод калибровки альтиметров, и для удобства в нем была принята стандартная температура на уровне моря и стандартная скорость ее падения с увеличением высоты. Таким образом, сезонные колебания температур в расчет не принимались, равно как и изменения плотности атмосферы по долготе (на экваторе плотность выше, на полюсах — ниже). Поскольку в результате проведенных по этому стандартному методу расчетов давление на вершине Эвереста получалось ниже (236 торр), чем на самом деле, некоторые ученые пришли к выводу, что без дополнительного кислорода на вершине человек выжить не сможет. Самые проницательные догадывались, что атмосферное давление посчитано неправильно, однако все равно не представляли, каким оно должно быть на самом деле. И только в 1981 г., когда состоялась Американская медицинская исследовательская экспедиция на Эверест, доктор Крис Пиццо измерил атмосферное давление на вершине, и оно составило 253 торра. История эта показывает, как важно с предельной точностью выверять каждую переменную при расчетах и как опасно основываться на расчетных данных, а не на измерениях. Надо, впрочем, отметить, что, будь Эверест расположен на каком нибудь из полюсов, атмосферное давление там действительно оказалось бы слишком низким и человек не смог бы выжить на вершине без дополнительного кислорода.

Другая ошибка вкралась в расчеты содержания кислорода в легких на вершине Эвереста. Одной из первых попытку комплексного изучения долговременной адаптации к высоте предприняла в 1911 г. Мейбл Пьюрфой Фицджеральд во время экспедиции Оксфордского университета на пик Пайка в Колорадо, под руководством знаменитого физиолога Джона Скотта Холдейна. Фицджеральд изучала физиологию в Оксфорде. В то время женщинам уже разрешали сдавать экзамены (недавняя уступка), но их фамилии в списки групп не вносились и диплом им не вручали. Мейбл, однако, удалось закончить курс с отличием. Она осталась работать в Оксфорде, на факультете физиологии, и провела ряд исследований в области дыхания. В 1911 г. вместе с Холдейном, Гордоном Дугласом (еще одним знаменитым физиологом) и другими исследователями Мейбл отправилась на пик Пайка — одну из самых высоких вершин в Соединенных Штатах (4302 м). Целью экспедиции было изучить влияние высокогорных условий на организм человека (т. е. организм участников). Экспедиция не была спортивной — фуникулер на паровой тяге доставил ученых прямо на вершину, увенчанную небольшой избушкой, известной как «Вершинный дом». Там мужчины расположились с относительным комфортом, однако Мейбл пришлось размещаться отдельно — возможно, из-за трудностей с организацией ночлега. Поэтому ее отправили на муле на нижний уступ, чтобы она изучала там содержание гемоглобина в крови и углекислого газа в выдыхаемом воздухе у местных горняков.

Усилия ее увенчались успехом. Фицджеральд подтвердила более ранние наблюдения, что содержание гемоглобина в крови, а значит и количество эритроцитов, у акклиматизировавшегося человека повышается. Кроме того, ее данные демонстрировали на удивление прямую зависимость между высотой и парциальным давлением углекислого газа в воздухе, выдыхаемом из альвеол. Экстраполировав эту зависимость на высоту 8848 м (высоту Эвереста), вычислили, что парциальное давление альвеолярного углекислого газа должно составлять около 15 торр. При таком уровне углекислого газа парциальное давление кислорода в легких составляет около 20 торр, далеко за пределами выживания для человека. Поэтому долгие годы на этих вычислениях основывалась ошибочная уверенность, что без дополнительного кислорода достичь вершины Эвереста не удастся. Теперь, оглядываясь назад, нетрудно понять, откуда взялась эта ошибка. Дело в том, что выше 5500 м зависимость между высотой и парциальным давлением углекислого газа в альвеолах уже не линейная, поскольку там начинается значительное учащение дыхания. Соответственно, парциальное давление кислорода в альвеолах на вершине Эвереста гораздо выше, чем предполагалось (35 торр, а не 20), и при нем вполне можно существовать, как продемонстрировали многочисленные альпинисты. Этот пример показывает, как рискованно экстраполировать выводы за пределы исследованной области (результаты исследований Мейбл ограничивались отметкой 4270 м), поскольку нет гарантии, что отмеченные закономерности сохранятся.

Где то в 1920 г. Мейбл исчезла с научного горизонта. Много лет спустя выяснилось, что она живет в Оксфорде, недалеко от факультета физиологии, а в 1972 г., на столетний юбилей, Оксфорд наконец вручил ей заслуженный диплом.

Взгляд свысока

Пониженное содержание кислорода — это основной неблагоприятный фактор для человека, забравшегося на вершину горы, однако помимо него имеются и другие — холод, обезвоживание, солнечные ожоги. Солнечное излучение на большой высоте необычайно интенсивно, поскольку, во-первых, легче проникает через разреженный воздух, а во-вторых, солнечные лучи отражаются от снега и льда, так что можно сильно обгореть. На высоте также уменьшается влажность, поскольку с понижением температуры и атмосферного давления снижается содержание водяного пара в воздухе. Обезвоживание, усугубленное учащенным дыханием, представляет серьезную опасность, поэтому на высоте важно много пить, чтобы возмещать влагу, испаряющуюся из легких в процессе дыхания. Обеспечить это нелегко, поскольку придется тащить на себе либо воду, либо горючее, чтобы растапливать снег. Однако самую главную опасность представляет холод. Температура понижается примерно на 1° С через каждые 100 м подъема, поскольку с расширением воздух теряет тепловую энергию. К температурному спаду добавляются резкие ветры, повышающие «ветро-холодовый индекс». Некоторые альпинисты лишались из за обморожения фаланг пальцев рук и ног. Например, во время экспедиции 1988 г. на печально знаменитую стену Каншунг Эвереста Стив Венаблз потерял три с половиной пальца на ногах, а Эду Вебстеру пришлось ампутировать три пальца ног и крайние фаланги восьми пальцев рук. Остальные участники экспедиции погибли. Почему так случилось и как справляется организм с предельно низкими температурами, рассказывается в главе 4.


1 Здесь и далее в этой главе цитаты из книги Дж. Ханта «Восхождение на Эверест» в переводе Ю. Б. Гиппенрейтер, Ю. М. Широкова, Б. А. Гарфа.


Комментарии (2)


 


при поддержке фонда Дмитрия Зимина - Династия