Элементы Элементы большой науки

Поставить закладку

Напишите нам

Карта сайта

Содержание
Энциклопедия
Введение
Физика
Астрономия
Математика
Химия
Науки о жизни
Науки о Земле
Разное
Взгляд в прошлое
Биографии
Новости науки
LHC
Картинка дня
Библиотека
Видеотека
Книжный клуб
Задачи
Масштабы: времена
Детские вопросы
Плакаты
Научный календарь
Наука и право
ЖОБ
Наука в Рунете

Поиск

Новости науки: физика

 
27.04
Теоретики продолжают искать объяснения двухфотонному пику

01.04
Обнаружены коллективные эффекты в поведении физиков-теоретиков

23.03
Загадочный двухфотонный пик проступает всё сильнее

29.02
Метрика Карла Шварцшильда: предыстория, история и часть постистории

26.01
Джордж и его команда: к 70-летию горячей модели Вселенной






Главная / Энциклопедия / Физика / Дифракция версия для печати

Дифракция



Дифракционная картина возникает в результате интерференции вторичных световых волн при огибании лучами света препятствий или их прохождении через множественные отверстия.




1690 Принцип Гюйгенса
1807 Интерференция
1818 Дифракция

Идея о волновой природе света (см. Спектр электромагнитного излучения) получила серьезное подтверждение в результате открытия и изучения в начале XIX века явлений интерференции и дифракции света. Традиционное со времен Ньютона и из-за его непререкаемого авторитета долго остающееся неизменным представление о свете как о потоке частиц — так называемая корпускулярная теория света — оказалось поставленным под серьезное сомнение после открытия интерференции. А вскоре о корпускулярной теории и вовсе забыли — почти на целое столетие — в результате открытия и исследования явлений дифракции, в результате чего волновая теория света стала новым ортодоксальным и незыблемым представлением о нем. Лишь после объяснения с корпускулярной точки зрения фотоэлектрического эффекта и зарождения квантовой механики корпускулярные представления о свете получили второе рождение в рамках принципа дополнительности.

Основы явления дифракции можно понять, если обратиться к принципу Гюйгенса, согласно которому каждая точка на пути распространения светового луча может рассматриваться как новый независимый источник вторичных волн, и дальнейшая дифракционная картина оказывается обусловленной интерференцией этих вторичных волн. При взаимодействии световой волны с препятствием часть вторичных волн Гюйгенса блокируется. Например, при падении световой волны сверху под острым углом на бритву на верхней плоскости бритвы вторичные волны Гюйгенса образовываться будут, а на нижней нет. Однако в результате конструктивной интерференции вторичные волны всё равно обогнут бритву, и мы увидим там сплошной световой луч, как если бы на пути его распространения ничего не стояло. Подобное же «огибание» волной препятствия можно наблюдать и в морском порту в шторм: суда, стоящие на якоре за волнорезом, который, казалось бы, должен полностью гасить волны, тем не менее «гуляют» вверх-вниз благодаря вторичным волнам.

Если источник света и точка наблюдения удалены от препятствия на незначительное расстояние, исходные и результирующие лучи света не параллельны друг другу — и мы наблюдаем дифракцию Френеля (дифракцию в ближней зоне). Если же источник и точка наблюдения находятся на значительном расстоянии от препятствия (точки дифракции), лучи практически параллельны, и мы наблюдаем дифракцию Фраунгофера (дифракцию в дальней зоне). Фраунгофер, кстати, изобрел целый ряд важных прецизионных оптических приборов, включая дифракционную решетку. Она представляет собой систему расположенных на небольшом расстоянии друг от друга микроскопических линий, отражающих свет. Изначально это была затемненная стеклянная пластина с тщательно нанесенными на нее параллельными штрихами. Каждый такой штрих отражает свет, и его можно считать вторичным источником волн Гюйгенса, которые вступают в интерференцию и взаимно усиливаются под определенными углами после рассеяния на решетке.

Начиная с середины XIX века дифракционная решетка стала важнейшим инструментом спектроскопии — с ее помощью ученые исследуют спектры излучения светящихся объектов и спектры поглощения различных веществ и по ним определяют их химический состав. Одним из важнейших открытий Фраунгофера стало обнаружение темных линий в спектре Солнца. Сегодня мы знаем, что они возникают в результате поглощения световых волн определенной длины относительно холодным веществом солнечной короны, и благодаря этому можем судить о химическом составе нашего светила.

См. также:

 Закон отражения света
 Закон Брюстера
 Критерий Рэлея
 Закон Брэгга


Комментарии (1)  


‹‹ Назад | Дальше ››

Йозеф ФРАУНГОФЕР (Joseph von Fraunhofer). Изображение с сайта www.geomatics.ucalgary.ca
Йозеф ФРАУНГОФЕР
Joseph von Fraunhofer, 1787–1826

Немецкий физик и оптик, уроженец Штраубинга (Straubing), сын ремесленника-стеклодува. Рано осиротев, пошел в подмастерья к стекольщику. В возрасте 14 лет серьезно пострадал при обрушении новостройки, провел несколько дней под завалом и благодаря этому несчастному случаю приобрел некоторую популярность. В частности, получил от властей Баварии денежную компенсацию, на которую открыл собственное стекольное дело, с которым в 1806 году присоединился к знаменитой баварской фирме Utzscheider, которая в те дни пользовалась славой производителя лучших в мире оптических инструментов. Явление дифракции Фраунгофер исследовал с чисто прикладной точки зрения: делом своей жизни он считал изобретение идеальных ахроматических линз, которые не давали бы радужного ореола вокруг изображения.

при поддержке фонда Дмитрия Зимина - Династия