Элементы Элементы большой науки

Поставить закладку

Напишите нам

Карта сайта

Содержание
Энциклопедия
Новости науки
LHC
Картинка дня
Библиотека
Видеотека
Книжный клуб
Задачи
Масштабы: времена
Детские вопросы
Плакаты
Научный календарь
Наука и право
ЖОБ
Наука в Рунете

Поиск

Подпишитесь на «Элементы»



ВКонтакте
в Твиттере
в Фейсбуке
на Youtube
в Instagram



Библиотека

 
Л. Краусс
«Страх физики». Глава из книги


Интервью с В. Сурдиным
Полет на Луну — это командировка на неделю


А. Акопян
Как ищут тёмную материю


И. Акулич
Идеальный почтовый индекс


А. Бердников
Интерференция в домашних условиях. Плёнки и антиплёнки


Интервью с Л. Марголисом
Леонид Марголис: «Мне всегда было интересно, как клетки разговаривают друг с другом»


А. Иванов
Сибирь и Северная Америка были единым целым более миллиарда лет назад


П. Амнуэль
Одиночество во Вселенной


Р. Фишман
Детективы каменного века


О. Макаров
Животные, которые дарят надежду







Главная / Новости науки версия для печати

Рибопереключатели — новая мишень для антибиотиков


Рис. 1. Принцип поиска соединений, блокирующих синтез рибофлавина в бактериях

Рис. 1. Принцип поиска соединений, блокирующих синтез рибофлавина в бактериях. а — в присутствии ингибитора рибофлавин восстанавливает рост бактерий. b — и флавинмононуклеотид (FMN), и рибоцил блокируют функцию мРНК гена, участвующего в синтезе рибофлавина. Они связываются с рибопереключателем — регуляторным доменом в некодирующей области мРНК и блокируют ее трансляцию в белок. с — структуры флавинмононуклеотида и рибоцила сильно различаются. Рисунок из синопсиса к обсуждаемой статье в Nature

Скрининг почти 57 000 токсичных для бактерий синтетических соединений позволил выявить высокоспецифический регулятор трансляции мРНК одного из генов пути синтеза рибофлавина, жизненно важного для батерий. Несмотря на отличие структуры этого регулятора (его назвали рибоцилом) от структуры естественного регулятора флавинмононуклеотида, рибоцил тоже оказался способным блокировать этот путь, выключая рибопереключатель гена ribB и подавляя таким образом трансляцию мРНК. Рибопереключатели могут стать перспективными мишенями для разработки новых синтетических лекарственных средств.

Открытие и успешное применение антибиотиков для лечения инфекционных заболеваний можно считать величайшим достижением медицины ХХ века. Открыватели антибиотиков были удостоены Нобелевских премий: в 1939 году премию присудили Герхарду Домагку за открытие антибактериального эффекта пронтозила (см. Prontosil), а в 1945 году премия досталась Александру Флемингу, впервые выделившему пенициллин, и Ховарду Флори с Эрнстом Чейном, получившим его в чистом виде. Термин «антибиотики» был предложен в 1942 году Зельманом Ваксманом, который был награжден Нобелевской премией за открытие стрептомицина (в 1952 году). Традиционно антибиотиками называли природные антибактериальные или антигрибковые агенты. В последнее время это название распространяют и на искусственно синтезированные соединения, которые в ряде случаев даже более активны, чем природные.

Открытие антибиотиков оказалось одним из главных прорывов в медицине ХХ века и позволило справиться с большим числом ранее неизлечимых болезней. Но некоторое время назад стало ясно, что массовое применение антибиотиков служит сильным драйвером естественного отбора для многих патогенных бактерий, в результате чего они рано или поздно могут вырабатывать механизмы резистентности (устойчивости) к антибиотикам (см. также статьи А. Чубенко «Антибиотиковый апокалипсис» и Д. Гилярова «Конец прекрасной эпохи»). Можно выделить следующие основные пути приобретения резистентности:

  • приобретение бактерией ферментов, разрушающих или модифицирующих антибиотик (например, в результате приобретения генов таких ферментов от других бактерий при помощи горизонтального переноса генов);
  • перестройка структуры рибосом, в результате которой они перестают связываться с антибиотиком, блокирующим трансляцию;
  • мутации мишеней антибиотиков — белков, участвующих в биогенезе клеточной стенки бактерий;
  • генетические мутации бактерий, меняющие их метаболизм так, что пути метаболизма, блокируемые антибиотиком, перестают быть необходимыми;
  • перестройки клеточной стенки бактерии или механизмов транспорта через нее, в результате которых антибиотик либо не проникает в клетку, либо быстро выводится.

Из сказанного ясно, что медицинская практика постоянно требует новые антибиотики. Однако многие фармацевтические компании отказываются от таких разработок, считая их нерентабельными.

Рис. 2. Структурная формула рибофлавина. Рисунок с сайта en.wikipedia.org

Рис. 2. Структурная формула рибофлавина. Рисунок с сайта en.wikipedia.org

Исследователи корпорации Merck не последовали этой тенденции. Они сосредоточились на поиске соединений, подавляющих рост бактерий за счет блокировки у них пути синтеза рибофлавина (витамина В2). Рибофлавин (рис. 2) является предшественником флавинмононуклеотида (ФМН) и флавинадениндинуклеотида — коферментов (небелковых компонентов) ряда окислительно-восстановительных ферментов, жизненно важных для всех организмов. Многие бактерии, растения и грибы могут синтезировать рибофлавин. Если рибофлавина в среде достаточно, срабатывает регуляторный механизм по принципу отрицательной обратной связи, и его синтез прекращается. (Позвоночные, в том числе человек, синтезировать рибофлавин не могут, а получают его с пищей. Человеку рибофлавин и его производные необходимы для продукции антител, образования эритроцитов и осуществления функции гемоглобина, многих других функций органов и организма.)

Поиски блокаторов путей синтеза рибофлавина проводились на модельном объекте — кишечной палочке. Эти пути одинаковы для многих микроорганизмов, в том числе болезнетворных. Нужные вещества искали среди синтетических низкомолекулярных ингибиторов роста бактерий: ученых интересовали те из них, которые блокируют у бактерий синтез рибофлавина. То есть эти ингибиторы должны были подавлять рост бактерий в отсутствие в среде рибофлавина, но позволять рост при наличии рибофлавина (рис. 1). На кишечной палочке было проверено примерно 57 000 (!) соединений и найдено то, которое отвечало нужным требованиям. Это вещество назвали рибоцилом (ribocil). При испытании in vivo на мышах рибоцил примерно в 1000 раз тормозил размножение патогенных бактерий.

В поисках мишени действия рибоцила ученые выращивали бактерии в присутствии сублетальных концентраций этого соединения, чтобы вывести устойчивые клоны. Когда бактерии переставали погибать от рибоцила (что означало, что они приспособились и выработали мутации устойчивости к рибоцилу), геномы полученного клона полностью секвенировали и сравнивали с геномом исходной кишечной палочки. Таким образом ученые определяли, в каких местах произошли мутации.

Оказалось, что мутации, вызывающие устойчивость к рибоцилу, локализованы в так называемом рибопереключателе гена ribB (рис. 3), кодирующего фермент DHBP-синтазу (см. DHBP synthase), ответственный за синтез одного из предшественников рибофлавина. Рибопереключатель представляет собой нуклеотидную последовательность, расположенную в 5′-нетранслируемой области мРНК перед последовательностью, кодирующей белок; он характеризуется выраженной вторичной структурой и служит для регуляции трансляции (о рибопереключателях, или РНК-переключателях, см. Сложные РНК-переключатели — новый механизм регуляции генов, «Элементы», 18.10.2006). Когда ФМН находится в среде в достаточном количестве, он образует с рибопереключателем конформацию, препятствующую трансляции мРНК. При дефиците ФМН трансляция мРНК возобновляется. Несмотря на то что структура молекулы рибоцила сильно отличается от ФМН, рибоцил тоже образует комплекс с рибопереключателем гена ribB и блокирует трансляцию мРНК. Это было подтверждено данными рентгеноструктурного анализа.

Рис. 3. Структура рибопереключателя гена ribB и локализация мутаций устойчивости к рибоцилу

Рис. 3. Структура рибопереключателя гена ribB и локализация мутаций устойчивости к рибоцилу. а — cхема функционирования рибопереключателя гена ribB. Слева — флавинмононуклеотид (ФМН) связывается с аптамером рибопереключателя и вызывает изменение конформации платформы экспрессии, блокирующее трансляцию. Справа — в отсутствие ФМН конформация аптамера позволяет трансляцию. b — рассчитанная вторичная структура рибопереключателя гена ribB. Зелеными квадратами отмечены точки контакта с ФМН. Розовым цветом обозначены мутации устойчивости к рибоцилу. Рисунок из обсуждаемой статьи в Nature

Таким образом, авторы впервые идентифицировали синтетическую молекулу, способную «выключать» рибопереключатель несмотря на то, что она сильно отличается от природного эффектора. Это отличие снижает возможность проявления каких-то нежелательных побочных биологических эффектов. И действительно, даже очень высокие концентрации рибоцила оказались нетоксичными для мышей. В общем, авторы показали, что некодирующие рибопереключатели могут стать перспективными мишенями для разработки новых синтетических лекарственных средств. Если предложенный подход найдет практическое применение, то можно надеяться, что болезнетворные микроорганизмы достаточно долго не смогут выработать резистентность к новым антибиотикам.

Источники:
1) John A. Howe et al. Selective small-molecule inhibition of an RNA structural element // Nature. 2015. V. 526. P. 672–677.
2) Thomas Hermann. Non-coding RNA: Antibiotic tricks a switch // Nature. 2015. V. 526. P. 650–651. (Синопсис к обсуждаемой статье.)

Вячеслав Калинин


Комментарии (8)



Последние новости: МедицинаГенетикаВячеслав Калинин

11.07
Архаичные гены костных ганоидов разнообразнее, чем у более молодых групп позвоночных
15.06
Получение генов пектиназ от протеобактерий резко ускорило видообразование палочников
14.06
Полиплоидность предков эукариот — ключ к пониманию происхождения митоза и мейоза
10.06
Удалось выяснить, почему рак может уснуть и проснуться через много лет
7.06
Индийская община Бней-Исраэль не может быть одним из десяти потерянных колен
6.06
Промышленный меланизм бабочек получил генетическое объяснение
2.06
Обнаружено фундаментальное сходство между развитием актинии и развитием позвоночных
18.05
Обнаружены одноклеточные организмы с ядром, но без митохондрий
16.05
Уровень полученного образования отчасти зависит от генов
13.05
Удалось проследить зарождение и развитие меланомы от первой раковой клетки

Научная картинка дня


Новости науки по темам: антропология, археология, астрономическая научная картинка дня, астрономия, биология, биотехнологии, генетика, геология, затмения, информационные технологии, космос, лингвистика, математика, медицина, нанотехнологии, наука в России, наука и общество, Нобелевские премии, палеонтология, Первое апреля, психология, технологии, физика, химия, эволюция, экология, энергетика, этология

Новости науки по авторам: Валентин Анаников, Дарья Баранова, Вера Башмакова, Александр Бердичевский, Максим Борисов, Варвара Веденина, Александр Венедюхин, Михаил Волович, Михаил Гарбузов, Алексей Гиляров, Дмитрий Гиляров, Сергей Глаголев, Евгений Гордеев, Николай Горностаев, Владимир Гриньков, Дмитрий Дагаев, Юрий Ерин, Анастасия Еськова, Дмитрий Жарков, Андрей Журавлёв, Дмитрий Замолодчиков, Игорь Иванов, Вячеслав Калинин, Павел Квартальнов, Мария Кирсанова, Дмитрий Кирюхин, Александр Козловский, Юлия Кондратенко, Артем Коржиманов, Ольга Кочина, Аркадий Курамшин, Виталий Кушниров, Иван Лаврёнов, Алексей Левин, Андрей Логинов, Сергей Лысенков, Лейла Мамирова, Александр Марков, Мария Медникова, Вадим Мокиевский, Григорий Молев, Тарас Молотилин, Антон Морковин, Марат Мусин, Максим Нагорных, Елена Наймарк, Алексей Опаев, Петр Петров, Александр Пиперски, Константин Попадьин, Сергей Попов, Роман Ракитов, Татьяна Романовская, Александр Самардак, Александр Сергеев, Андрей Сидоренко, Виктория Скобеева, Даниил Смирнов, Павел Смирнов, Дарья Спасская, Любовь Стрельникова, Алексей Тимошенко, Александр Токарев, Александр Храмов, Мария Шнырёва, Сергей Ястребов, Светлана Ястребова

Новости науки по месяцам: 2016 VII, VI, V, IV, III, II, I  2015 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2014 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2013 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2012 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2011 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2010 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2009 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2008 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2007 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2006 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2005 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I 

Новости науки почтой (рассылка на Subscribe.ru):

 


Где еще почитать научные новости: «Биомолекула», «Вокруг света», Газета.ру. Наука, «Наука и жизнь», Наука и технологии РФ, «Научная Россия», «Популярная механика», РИА Наука, «Чердак», N+1, Naked Science

 


при поддержке фонда Дмитрия Зимина - Династия