Элементы Элементы большой науки

Поставить закладку

Напишите нам

Карта сайта

Содержание
Энциклопедия
Новости науки
LHC
Картинка дня
Библиотека
Видеотека
Книжный клуб
Задачи
Масштабы: времена
Детские вопросы
Плакаты
Научный календарь
Наука и право
ЖОБ
Наука в Рунете

Поиск

Подпишитесь на «Элементы»



ВКонтакте
в Твиттере
в Фейсбуке
на Youtube
в Instagram



Библиотека

 
Р. Найт
«Смотри, что у тебя внутри». Глава из книги


К. Циммер
«Микрокосм». Глава из книги


Н. Резник
Как черепахи нарыли себе панцирь


Интервью с Б. Янишем
Наследники Поппера


А. Гуков
Крупные животные Арктики: сколько их осталось?


А. Огнёв
Откуда жизнь? Еще теплее!


Р. Докинз
«Эгоистичный ген». Глава из книги


А. Бердников
Вдоль по лунной дорожке


В. Бабицкая, С. Горбунов
Как и зачем птицы общаются с охотниками за медом


Е. Чернова
Хаос и порядок: фрактальный мир







Главная / Новости науки версия для печати

Регенерация покровных тканей без шрамов возможна у млекопитающих


Рис. 1. Ушки мышей с проколотыми дырочками в первый день и после 28 дней

Рис. 1. Вверху: ушки мышей с проколотыми дырочками в первый день и после 28 дней. Слева — обычные мыши (WT), справа — гомозиготные линии мышей p21−/−, у которых в покровных тканях не синтезируется белок p21; видна высокая степень регенерации тканей во втором случае. Внизу на графике показано изменение площади прокола в процессе заживления. У мышей p21−/− (пунктирная линия) площадь прокола сокращается существенно быстрее и с лучшим результатом, чем у обычных мышей (сплошная линия). Рисунок из обсуждаемой статьи в Genes & Development

Американские ученые разобрались в деталях работы связки регуляторных генов и соответствующих белков во время заживления ран кожных покровов и подкожных тканей. Эксперименты проводились на мышах, но так как в данном случае задействованы консервативные гены, то результаты, вполне возможно, приложимы и к человеческой медицине. Ученые доказали, что возможна регенерация без образования рубцов, объяснили и показали, как можно достигнуть подобного результата.

Группа ученых из медицинской школы Стэнфордского университета изучала процесс регенерации тканей после ранений в зависимости от присутствия белка p21 — ингибитора циклин-зависимой киназы 1А (его также называют CDKN1A — cyclin-dependent kinase inhibitor 1A). Известно, в частности, что этот белок играет значимую роль в формировании клеточного ответа на повреждение ДНК и в регуляции клеточного цикла. О других его функциях и регуляторных каскадах с его участием пока известно немного. Интересной с точки зрения клинических возможностей является высокая экспрессия гена этого белка в местах заживления ран: прежде было продемонстрировано на мышах, кроликах и кошках, что ингибирование или отсутствие p21 приводит к быстрой регенерации тканей ушей без образования рубцов.

И вот теперь ученые провели многоплановые исследования, показав, как именно работает этот белок в местах повреждений. У мышей в ушках прокалывали круглые дырочки диаметром 2 мм и в течение месяца регистрировали скорость их зарастания, состояние клеток разных типов, судьбу отдельных клеточных линий, а также уровень экспрессии генов, связанных так или иначе с p21.

Как и ожидалось, у тех мышей, у которых в коже белок p21 не синтезировался (мутантная линия), заживление и регенерация повреждения протекали существенно быстрее (рис. 1). Но это еще не всё. За месяц восстановился в известном объеме хрящевой прослой под кожей, а также появились и кровеносные капилляры. Вопреки известным представлениям о ходе заживления, клетки соответствующих тканей формировались не из неспециализированных стволовых клеток, а за счет созревания клеток-предшественников каждой из тканей. Иными словами, клетки кожи образуются из клеток-предшественников кожи, клетки хряща — из предшественников хондроцитов (рис. 2).

Рис. 2. Образование слоя хондроцитов в месте повреждения уха

Рис. 2. Образование слоя хондроцитов (зеленый слой, обозначен красной стрелкой) в месте повреждения уха. Показан поперечный срез тканей, тонкий пунктир — граница прокола, справа на каждом кадре — текущая граница регенерации тканей. У мышей дикого типа (левая колонка кадров) хондроциты не появились, а у линий p21−/− сформировался слой хряща. Внизу — количественные оценки числа хондроцитов. Рисунок из обсуждаемой статьи в Genes & Development

Развитие каждого типа клеток на своем месте, определенном окружающими биохимическими условиями, обеспечило восстановление тканевой структуры. Также в ходе заживления не сформировался обычный рубец и на месте заросшей дырочки не появился шрам. Всё это не похоже на обычный процесс заживления, когда на месте повреждения вместо первоначальной гистологической архитектуры образуется толстая фиброзная ткань. Как такое могло получиться?

Обычно вместе с белком p21 в регенерирующих тканях появляется фактор SDF-1 (stromal cell-derived factor 1). Его производят кератиноциты в местах повреждения. Он, связываясь с рецептором Cxcr4 в лейкоцитах, регулирует миграцию и мобилизацию лейкоцитов к месту повреждения, где они обеспечивают рост фиброзной ткани. Таким образом, связка SDF-1 и Cxcr4 приводит к образованию рубцов в различных тканях (легких, печени, сердце). А вот в мышиных линиях p21−/−, у которых белок p21 не синтезировался, количество SDF-1 и, соответственно, Cxcr4 резко уменьшено. Из этого можно заключить, что в местах повреждения присутствие белка p21 усиливает синтез SDF-1.

Этот вывод проверили с помощью генетических маркеров (измерили количество матричных РНК SDF-1) в местах повреждений ушей у обычных мышей и мышей линий p21−/−. Также проверили, что произойдет, если в нормальных кератиноцитах выключить р21 тем или иным способом, например связать химически. В этом случае SDF-1 тоже перестает синтезироваться. Также ранее было известно, что p21 действует совместно, как кофактор, с транскрипционным фактором C/EBPα. В обсуждаемых экспериментах ученые проверили и это: подавление C/EBPα вызывает снижение ответного синтеза SDF-1.

Таким образом, вырисовывается схема действия факторов регенерации — или, скорее, факторов, препятствующих регенерации (рис. 3). Отсутствие активности p21 в кератиноцитах отключает образование сигнального комплекса SDF-1 + C/EBPα; в результате к месту повреждения в меньшем количестве мобилизуются лейкоциты, имеющие рецепторы Cxcr4. В результате образование фиброзного рубца сильно замедляется. В отсутствие конкуренции вместо этого активизируются тканевые клетки-предшественники, формируя изначальную (контекстную) структуру тканей.

Рис. 3. Схема каскада, обеспечивающего регенерацию тканей поврежденного уха

Рис. 3. Схема каскада, обеспечивающего регенерацию тканей поврежденного уха: слева — у нормальной мыши, справа — у мыши линии p21−/−. Рисунок из обсуждаемой статьи в Genes & Development

Раз происходит такая удачная регенерация, то возникает естественное желание лечить повреждения кожи с помощью манипулирования биохимической активностью участников этой схемы. Ученые продемонстрировали такую возможность. Они использовали ингибитор фактора Cxcr4 — хорошо известный ADM-3100, который применяется для лечения некоторых типов рака и ВИЧ-инфекций. При обработке проколов препаратами ADM-3100 в течение недели (как выяснилось в экспериментах, этого срока достаточно) зарастание уха шло существенно скорее, чем у контрольной группы мышей (рис. 4). Рубцы не появились, зато, согласно схеме, стал формироваться хрящевой прослой.

Рис. 4. Сравнение проколов в ушках мышей без лечения и с местной обработкой прокола препаратом ADM-3100

Рис. 4. Сравнение проколов в ушках мышей без лечения и с местной обработкой прокола препаратом ADM-3100. Слева — фото результатов зарастания проколов без лечения (левое фото) и с лечением, справа — график с динамикой зарастания прокола с лечением (пунктир) и без него. Видно, что восстановление ткани при лечении идет в два раза быстрее и эффективнее. Рисунок из обсуждаемой статьи в Genes & Development

Авторы предполагают, что на основе открытого механизма с помощью как ADM-3100, так и других сопряженных веществ можно лечить сложные кожные экземы — хотя перспективы клинического использования этой схемы существенно шире. При этом они обсуждают различные вариации работы выявленного каскада в зависимости от типа тканей и типов повреждений, фокусируя внимание на очевидном тканеспецифичном контексте ее активности.

Источник: Thomas H. Leung, Emily R. Snyder, Yinghua Liu, Jing Wang, and Seung K. Kim. A cellular, molecular, and pharmacological basis for appendage regeneration in mice // Genes & Development. 2015. V. 29. P. 2097–2107.

Елена Наймарк


Комментарии (22)



Последние новости: ГенетикаМедицинаЕлена Наймарк

28.09
Новые геномные данные позволили уточнить историю заселения Евразии и Австралии
21.09
В условиях антропогенного шума летучие мыши перестают полагаться на слух
20.09
Третий — не лишний: в большинстве лишайников присутствуют два гриба и водоросль
15.09
Разработан метод пространственной визуализации транскрипции генов
13.09
Эволюционный эксперимент показал, где и как появляются наиболее приспособленные особи
5.09
Найдены строматолиты возрастом 3,7 млрд лет — древнейшие следы жизни на Земле
1.09
Т-клетки здоровых людей научили распознавать чужой рак
2.08
Гибридизация однодомных и двудомных растений увеличивает разнообразие половых фенотипов
29.07
Систему противовирусной защиты можно применить для эффективной иммунотерапии рака
11.07
Архаичные гены костных ганоидов разнообразнее, чем у более молодых групп позвоночных

Научная картинка дня


Новости науки по темам: антропология, археология, астрономическая научная картинка дня, астрономия, биология, биотехнологии, генетика, геология, затмения, информационные технологии, космос, лингвистика, математика, медицина, нанотехнологии, наука в России, наука и общество, Нобелевские премии, палеонтология, Первое апреля, психология, технологии, физика, химия, эволюция, экология, энергетика, этология

Новости науки по авторам: Валентин Анаников, Дарья Баранова, Вера Башмакова, Александр Бердичевский, Максим Борисов, Варвара Веденина, Александр Венедюхин, Михаил Волович, Михаил Гарбузов, Алексей Гиляров, Дмитрий Гиляров, Сергей Глаголев, Евгений Гордеев, Николай Горностаев, Владимир Гриньков, Дмитрий Дагаев, Юрий Ерин, Анастасия Еськова, Дмитрий Жарков, Андрей Журавлёв, Дмитрий Замолодчиков, Игорь Иванов, Вячеслав Калинин, Павел Квартальнов, Мария Кирсанова, Дмитрий Кирюхин, Александр Козловский, Юлия Кондратенко, Артем Коржиманов, Ольга Кочина, Аркадий Курамшин, Виталий Кушниров, Иван Лаврёнов, Алексей Левин, Андрей Логинов, Сергей Лысенков, Лейла Мамирова, Александр Марков, Мария Медникова, Вадим Мокиевский, Григорий Молев, Тарас Молотилин, Антон Морковин, Марат Мусин, Максим Нагорных, Елена Наймарк, Алексей Опаев, Петр Петров, Александр Пиперски, Константин Попадьин, Сергей Попов, Роман Ракитов, Татьяна Романовская, Александр Самардак, Александр Сергеев, Андрей Сидоренко, Виктория Скобеева, Даниил Смирнов, Павел Смирнов, Дарья Спасская, Любовь Стрельникова, Дмитрий Сутормин, Алексей Тимошенко, Александр Токарев, Александр Храмов, Мария Шнырёва, Сергей Ястребов, Светлана Ястребова

Новости науки по месяцам: 2016 IX, VIII, VII, VI, V, IV, III, II, I  2015 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2014 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2013 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2012 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2011 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2010 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2009 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2008 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2007 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2006 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2005 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I 

Новости науки почтой (рассылка на Subscribe.ru):

 


Где еще почитать научные новости: «Биомолекула», «Вокруг света», Газета.ру. Наука, «Наука и жизнь», Наука и технологии РФ, «Научная Россия», «Популярная механика», РИА Наука, «Чердак», N+1, Naked Science

 


при поддержке фонда Дмитрия Зимина - Династия