Новое в науке о знаменитых Hox-генах, регуляторах развития

Знаменитая дрозофила с ногами вместо антенн (справа); слева — нормальная дрозофила (фото с сайта www.mun.ca)
Знаменитая дрозофила с ногами вместо антенн (справа); слева — нормальная дрозофила (фото с сайта www.mun.ca)

Принято считать, что дифференцировка основных частей тела у многоклеточного двусторонне симметричного животного происходит в том порядке, в каком располагаются в хромосоме регуляторные Hox-гены. Однако за последнее время генетики выяснили о работе Hox-генов много новых подробностей, не укладывающихся в эту стройную систему.

Прошло уже больше 50 лет с тех пор, как Эдвард Льюис с удивлением рассматривал мутантную плодовую мушку, у которой на голове вместо антенн выросли ноги. Эта странная мутация получилась, когда ген, ответственный за формирование грудных конечностей, включился не в то время и не в том месте. А Эдвард Льюис (вместе с Кристианой Нюссляйн-Волхард и Эриком Вишаусом) получил в 1995 году за исследование этих механизмов эмбриогенеза Нобелевскую премию по физиологии и медицине.

Так было открыто семейство Hox-генов, отвечающих за правильное формирование частей тела у многоклеточных. Работа этих генов казалась чудом: вот оно, решение великой загадки, как из сборища одинаковых эмбриональных клеток в правильном порядке дифференцируются ткани и органы и в результате получается сложный организм. Необходимо только в нужный момент включать правильный Hox-ген.

Регуляторные Hox-гены у дрозофилы располагаются в хромосоме в довольно строгом порядке, приблизительно в том самом, в котором происходит дифференцировка основных частей тела двусторонне симметричного (билатерального) животного. Сначала у раннего эмбриона начинают работать гены, отвечающие за строение органов на голове, затем на груди, затем гены начинают оформлять и хвостовую часть.

Похожие гены были найдены у мыши и у человека. Даже у этих высших существ они выполняют ту же работу: отвечают за порядок эмбрионального развития. Открытие сходных Hox-генов у разных типов животных заставило зоологов и эмбриологов по-новому взглянуть на морфогенез животных и его преобразования в ходе эволюции. Стало ясно, что, изменив один ген или время его включения, можно трансформировать, образовать, удалить или перенести в другое место сразу целый орган, сохранив при этом общий план строения. Помимо этого ученые получили новый мощный инструмент для эволюционных построений: семейство гомологичных (происходящих один от другого) генов, присутствующих у всех многоклеточных животных. Все гипотезы о происхождении билатеральных животных (см. В. В. Малахов «Происхождение билатерально-симметричных животных (Bilateria)», Pdf, 347 Кб) теперь включают и этот пласт информации.

Hox-гены располагаются на одной или нескольких (до четырех) хромосомах, обычно тесными группами (кластерами), внутри которых сохраняется более или менее строгий порядок: «головные» гены впереди, «хвостовые» — сзади. У более примитивных представителей многоклеточных, таких как гребневики (Ctenophora) и кишечнополостные (Cnidaria), этих эмбриональных регуляторных генов только четыре, у млекопитающих их уже 48.

Семейство Hox-генов подразделяется на 14 классов. Считается, что эти 14 классов возникали путем дупликации одного или немногих исходных генов, реплики затем мутировали и обретали новые функции. У примитивных кишечнополостных и гребневиков имеется всего 4 класса Hox-генов, у предполагаемого общего предка двустороннесимметричных животных их должно было быть по крайней мере 8, у млекопитающих присутствуют все 14 классов. Принцип работы этих генов одинаков. Все они являются транскрипционными факторами, то есть их функция состоит во «включении» или «выключении» других генов. В результате работы Hox-факторов запускается каскад реакций, приводящий к появлению в клетке нужных белков.

В обзорной статье в Science, посвященной современному видению этой важнейшей группы генов, все эти сведения выпущены, так как считается, что биологи должны были их выучить уже на первом курсе любого биологического вуза. Дерек Лемонз (Derek Lemons) и Уильям Макджиннис (William McGinnis) из Калифорнийского университета в Сан-Диего (США) привели только новейшие данные, касающиеся принципов работы Hox-генов. И эти данные ясно дают понять, что наши ученические представления о семействе Hox-генов сильно устарели. В любой науке это неизбежно происходит по мере накопления информации. За последнее десятилетие расшифрованы ДНК-последовательности Hox-генов у многих групп животных: аннелид, плоских червей, иглокожих, нематод, членистоногих, оболочников, ланцетников, не говоря уже о млекопитающих.

Под тяжестью новых данных обрушилось представление об упорядоченном расположении Hox-генов в хромосомах. Выяснилось, что, например, у иглокожих первые три Hox-гена располагаются прямо перед последним (14-м), а начинается кластер с пятого гена. У нематод и оболочников Hox-гены вообще не образуют кластеров и их порядок в хромосомах не соблюдается вовсе. Это говорит о том, что правильный порядок экспрессии Hox-генов в различных частях эмбриона не соответствует порядку расположения этих генов в хромосоме. Порядок включения Hox-генов зависит, помимо «места под солнцем», еще от каких-то дополнительных факторов.

Обобщенная схема эволюции основных линий многоклеточных животных. Внизу показано предполагаемое строение Hox-кластера у общего предка билатеральных животных. У него предположительно имелось 8 Hox-генов в едином кластере. Гены нарисованы разными цветами и пронумерованы. Цифры дробью указывают, что данные гены совмещены, то есть еще не разошлись в ходе эволюции. Некоторые гены показаны одинаковым цветом, это означает большое сходство в их нуклеотидных последовательностях. Стрелочки указывают направление считывания генов на ДНК. Рис. из цитируемой статьи в Science
Обобщенная схема эволюции основных линий многоклеточных животных. Внизу показано предполагаемое строение Hox-кластера у общего предка билатеральных животных. У него предположительно имелось 8 Hox-генов в едином кластере. Гены нарисованы разными цветами и пронумерованы. Цифры дробью указывают, что данные гены совмещены, то есть еще не разошлись в ходе эволюции. Некоторые гены показаны одинаковым цветом, это означает большое сходство в их нуклеотидных последовательностях. Стрелочки указывают направление считывания генов на ДНК. Рис. из цитируемой статьи в Science

Число классов этих генов у различных групп животных сильно изменяется также в зависимости от типа животного. Завораживающее сходство Hox-кластеров у мухи и человека тускнеет, лишь только к ним прибавляется еще какая-нибудь группа двустороннесимметричных животных. Так, у нематод найдено всего 5 классов из 14, у оболочников — 9, зато у ланцетника — все 14. У паразитических трематод обнаружено всего 4 Hox-гена на двух хромосомах, и между этими четырьмя разбросаны другие гены, не связанные с Hox-семейством.

И вот вопрос: почему у двусторонне-симметричных плоских червей Hox-генов столько же, сколько и у радиально-симметричных кишечнополостных и гребневиков? У кишечнополостных вроде бы понятно: недостающих четырех классов генов еще не было, они образовались только после того, как сложился гипотетический предок двусторонне-симметричных животных. Но у червей-то куда делась половина предковых регуляторных генов, зачем они избавились от них? Или, может быть, этой недостающей половины и не было у предка? Ответа пока нет. Ясно только, что даже при потере большого числа Hox-генов оставшиеся могут организовать эмбриональное развитие сложного билатерального существа.

Зато стали известны детали регуляции самих регуляторных Hox-генов. Между Hox-генами расположены участки ДНК, прежде считавшиеся бессмысленными. В действительности, как оказалось, с них считываются короткие молекулы регуляторных РНК. Некоторые из них усиливают или ослабляют экспрессию самих Hox-генов, некоторые косвенно влияют на работу других транскрипционных факторов. В экспериментах показано, что эти микроРНК могут регулировать как соседний, так и отдаленный Hox-ген.

Так что семейство Hox-генов, главное из главных среди генов-регуляторов, само не имеет полной власти в своем хозяйстве. За ним следят мелкие «выскочки» РНК, способные видоизменить экспрессию гена и тем самым замедлить или ускорить формирование органа. Какова роль этих включений, каков масштаб их действий, откуда они взялись — все эти вопросы пока только заданы. Ответы — это дело будущих открытий.

Источник: Derek Lemons, William McGinnis. Genomic Evolution of Hox Gene Clusters // Science. 2006. V. 313. P. 1912-1922.

См. также:
1) Статья В.В.Малахова о происхождении билатерально-симметричных животных и Hox-генах (Pdf, 347 Кб).
2) Определение гомеобоксных генов.
3) David E. K. Ferrier, Peter W. H. Holland Ancient Origin of the Hox Gene Cluster (Pdf, 670 Кб) // Nature Reviews (Genetics). 2001. № 2, с. 33-38 — внятный обзор мнений о происхождении Hox-генов.
4) Division of Speciation Mechanisms II — про MADS-гены растений, аналоги Hox-генов у животных.
5) Определение MADS-генов.

Елена Наймарк


0
Написать комментарий


    Другие новости


    Элементы

    © 2005-2017 «Элементы»