Пути эволюции предопределены на молекулярном уровне

Яркий пример параллельной эволюции: сумчатый саблезубый тигр Thylacosmilus из плиоцена Южной Америки (вверху) и «обычный» саблезубый тигр Smilodon из плейстоцена Северной Америки (изображения с сайтов www.avph.hpg.ig.com.br и www.prismenfernglas.de)
Яркий пример параллельной эволюции: сумчатый саблезубый тигр Thylacosmilus из плиоцена Южной Америки (вверху) и «обычный» саблезубый тигр Smilodon из плейстоцена Северной Америки (изображения с сайтов www.avph.hpg.ig.com.br и www.prismenfernglas.de)

На примере приспособления бактерий к антибиотикам удалось показать, что дарвиновская эволюция может использовать лишь очень малую часть из множества теоретически возможных путей достижения цели. Каждая отдельная мутация должна повышать приспособленность, иначе она будет отсеяна отбором. При этом положительный или отрицательный эффект многих мутаций зависит от того, какие мутации уже успели зафиксироваться ранее. Ограниченность числа допустимых «мутационных траекторий» делает эволюцию предопределенным и предсказуемым процессом.

Раньше эволюционисты уделяли много внимания проблеме параллелизмов, то есть независимого появления сходных признаков в разных группах. Сформулированный Н. И. Вавиловым «Закон гомологических рядов в наследственной изменчивости» позволил связать это явление с закономерностями внутривидовой изменчивости (у близких видов встречаются одинаковые вариации — например, у большинства злаков есть остистые и безостые формы). Палеонтология дает много ярких примеров схожести путей эволюции в разных группах, развивавшихся параллельно.

В наши дни подобные «эмпирические обобщения» вышли из моды. Бурное развитие молекулярной биологии привело к тому, что многие важные биологические закономерности, изучавшиеся учеными прошлых поколений, оказались как бы за рамками «настоящей серьезной науки» просто потому, что их пока не удается объяснить на молекулярном уровне.

Поэтому предпринятая учеными из Гарвардского университета попытка найти молекулярные основы канализированности (ограниченности возможных путей) и повторяемости эволюции имеет большое теоретическое значение. В качестве модели исследователи выбрали адаптацию бактерий к антибиотикам — сравнительно простой эволюционный процесс, высоко детерминированный и повторяемый и к тому же имеющий большое практическое значение.

Как известно, бактерии приспосабливаются к антибиотикам из группы бета-лактамов (к ним относится, в частности, пенициллин) благодаря изменениям (мутациям) гена, кодирующего фермент бета-лактамазу. Предполагается, что мутации возникают случайно, причем вредные мутации отсеиваются отбором, а полезные закрепляются.

В ходе адаптации бактерий к цефотаксиму — антибиотику третьего поколения из группы бета-лактамов — в исходный вариант гена бета-лактамазы («дикий тип») вносится пять вполне конкретных мутаций, в результате чего устойчивость к антибиотику возрастает в 100 000 раз. Но такой эффект дают только все пять мутаций вместе. Понятно, что одновременное появление сразу пяти «нужных» мутаций невероятно: они должны появляться и фиксироваться последовательно, одна за другой. Значит, на пути к конечной цели организм должен пройти через четыре промежуточных состояния. Если хотя бы одно из них окажется менее выгодным, чем предыдущее, оно просто не будет закреплено отбором, и конечная цель не будет достигнута.

Теоретически существует 5! = 120 различных траекторий движения от исходного состояния («дикий тип»,  – – – – –) к конечному (высокая устойчивость к цефотаксиму,  + + + + +). Число возможных промежуточных состояний равно тридцати (– – – – +,  – – – + –,  – – – + +  и т. д.). Исследователи сконструировали все тридцать промежуточных вариантов гена бета-лактамазы, ввели их в кишечную палочку (Escherichia coli) и измерили устойчивость к цефотаксиму. Картина получилась довольно сложная.

Совокупный эффект комплекса из 2, 3 или 4 мутаций, как выяснилось, ничего общего не имеет с простым суммированием эффектов тех же мутаций, взятых по отдельности. В некоторых случаях природу взаимодействия мутаций друг с другом удалось расшифровать. Например, одна из пяти мутаций сама по себе не увеличивает, а снижает устойчивость к антибиотику (гидролиз цефотаксима происходит медленнее), однако она повышает термодинамическую стабильность фермента. Другая мутация ускоряет гидролиз цефотаксима, но снижает термодинамическую стабильность, и поэтому в целом лишь незначительно повышает устойчивость к антибиотику. Однако двойной мутант имеет резко повышенную устойчивость, поскольку его бета-лактамаза за счет второй мутации эффективно гидролизует цефотаксим, а за счет первой — не теряет термодинамическую стабильность. Понятно, что в ходе адаптации (в условиях жесткого отбора на устойчивость к цефотаксиму) первая из этих мутаций может быть зафиксирована лишь после второй.

Оказалось, что из 120 теоретически возможных путей последовательного приобретения пяти мутаций большинство (102) вообще не могут реализоваться, так как требуют на каком-то этапе временного снижения приспособленности (авторы рассматривали упрощенную теоретическую модель, в которой единственным критерием приспособленности является устойчивость к цефотаксиму). Оставшиеся 18 путей очень сильно различаются по вероятности своей реализации. Расчеты показали, что в 99% случаев эволюция «выберет» один из 10, а в 50% случаев — один из двух наиболее вероятных путей.

Таким образом, природа может реализовать лишь очень небольшую часть из общего числа теоретически существующих путей «из точки А в точку Б». Авторы полагают, что обнаруженное ими правило должно распространяться и на эволюцию других белков. Это означает, что молекулярной эволюции свойственна высокая повторяемость: разные организмы должны независимо друг от друга двигаться по одним и тем же «разрешенным» эволюционным траекториям. Авторы не исключают, что аналогичные ограничения (в том числе связанные с меж- и внутримолекулярными взаимодействиями) могут направлять и «канализировать» дарвиновскую эволюцию и на более высоких уровнях организации живого.

Источник: Daniel M. Weinreich, Nigel F. Delaney, Mark A. DePristo, Daniel L. Hartl. Darwinian Evolution Can Follow Only Very Few Mutational Paths to Fitter Proteins // Science. 2006. V. 312. P. 111-114.
Полный текст статьи см. здесь (PDF, 186 Кб).

См. также:
Параллелизмы и гомологическая изменчивость.

Александр Марков


7
Показать комментарии (7)
Свернуть комментарии (7)

  • dims  | 12.04.2006 | 00:23 Ответить
    Не могу понять. Авторы утверждают, что природа "не может" выбрать много путей просто потому, что они сами постулировали, что траектория обязана пролегать только в направлении улучшения свойств.

    Иными словами, они постулировали, что природа ищет локальный экстремум даже не методом градиентного спуска, а просто по очереди варьируя, в данном случае, 5 переменных.

    Но ведь по опыту использования генетических алгоритмов известно, что они порой работают даже лучше градиентного спуска. И основное преимущество, как раз, заключается в том, что допустимы и временные ухудшения характеристик. Таким образом, алгоритм получает способность перебраться через "хребет" и найти более выгодный экстремум. Логично предположить, что природные генетические алгоритмы работают не хуже наших компьютерных (а, скорее всего, намного лучше).

    Следовательно, корректнее говорить, что результатом работы является исследование пространства многомерной функции и установление факта, что чисто градиентная (или поэтапная) траектория спуска очень узка. Говорить же о том, что природа движется именно по этой траектории, на мой взгляд, у авторов нет оснований.
    Ответить
    • Марков Александр > dims | 12.04.2006 | 16:40 Ответить
      Конечно, все основано на вольных допущениях. А иначе в биологии вообще почти никогда нельзя ничего формализовать или, скажем, "строго доказать".
      В данном случае допущение (что фиксируются только изменения, повышающие устойчивость к антибиотику) как бы имитирует ситуацию, в которую попадает популяция микробов, когда ее начинают травить антибиотиком. Колоссальная смертность, однонаправленный отбор. Все остальные факторы отступают на второй план - можно считать, что вероятность выживания и размножения в этой ситуации зависит ТОЛЬКО от устойчивости к антибиотику. Трудно представить, как в такой обстановке могут зафиксироваться изменения, СНИЖАЮЩИЕ эту устойчивость. В более спокойной обстановке, конечно, могут размножиться и формы с пониженной устойчивостью, если они обладают какими-то иными преимуществами. И тогда этот "хребет" может быть преодолен.

      Есть и другой недостаток в этой работе: они рассматривали только пять мутаций, обеспечивающих устойчивость к антибиотикам, но ведь вполне возможно, что существуют другие траектории, включающие дополнительные мутации (шестую, седьмую...), которые могут быть не важны для конечного варианта, но помогают преодолеть какие-то "хребты", ослабляя вредные эффекты каких-то мутаций из тех пяти.
      Ответить
      • dims > Марков Александр | 12.04.2006 | 20:48 Ответить
        [quote]Трудно представить, как в такой обстановке могут зафиксироваться изменения, СНИЖАЮЩИЕ эту устойчивость.[/quote]
        Но ведь живут же как-то микробы ДО того, как они выработают устойчивость? Плохо живут, но живут! Если бы антибиотик убивал бы всех, кто не достиг нужного уровня устойчивости, тогда да. Но тогда бы вообще не происходило бы развития, все бы умерли в первом же поколении. А раз не умирают, значит убивает не всех. А раз убивает не всех, то не убьёт всех и среди тех, кто ухудшил свои характеристики. Да, смертность среди них была бы выше, размер группы меньше, но они всё равно бы были и всё равно могли бы стать проводником "непрямого" пути. Мне так кажется.

        [i]В более спокойной обстановке, конечно, могут размножиться и формы с пониженной устойчивостью, если они обладают какими-то иными преимуществами.[/i]
        А, то есть Вы считаете, что обязательно нужны иные _преимущества_. Но почему? Пусть родился микроб, который ХУЖЕ по всем параметрам. Что, у него нет шансов оставить потомство? Да, у него их меньше, но они не отсутствуют совсем!
        Ответить
      • dims > Марков Александр | 12.04.2006 | 20:55 Ответить
        Не были бы Вы так любезны прокомментировать мои мысли вот тут: http://elementy.ru/blogs/users/dims/3365/ ?
        Заранее спасибо.
        Ответить
  • igor_a  | 12.04.2006 | 17:13 Ответить
    В связи с актуальностью и дискуссионностью проблемы существования адаптивных мутаций в контексте этого исследования интересны были бы вероятностные расчёты ожидаемого времени формирования конструктивной "мутационной траектории" и сопоставление результатов расчётов с экспериментальными данными.
    Ответить
  • Mutagen  | 21.04.2006 | 16:13 Ответить
    Принимая такого рода концепцию (вполне справедливую на мой взгляд) как следствие можно предположить, что в сходных планетных условиях - желтые звезды-вода-белки-кислород наиболее вероятным результатом развития живых существ будут формы весьма похожие на земные. Никакая экзотика не представляется возможной - типа существ со сложным жизненным циклом (см. мирмикотов, А.Кларк Рама Явленный) или думающей биомассы Соляриса. Исключительно такие же кондовые млекопитающие, двуполые и о четырех ногах с пятью органами чувств, а как 'венец творения' местной эволюции - местные гуманоиды. Фигу вам разумные насекомые - осмелюсь предположить, что разумность как мутация видимо совместима только с 'гуманоидностью', что так же и подтверждается неоспоримым фактом существования Человека ;-))
    Ответить
  • Alex_V  | 26.05.2010 | 16:12 Ответить
    Бред. Эволюция не будет выбирать оптимальные варианты. Она просто заблудится в бесчисленности возможных путей. 120 - это число оптимальных путей, причем в том случае, когда цель известна. На деле, для одного белка в 100 аминокислот имеем 20^100 вариантов. Больше числа частиц во вселенной)))
    Ответить
Написать комментарий

Другие новости


Элементы

© 2005-2017 «Элементы»