Элементы Элементы большой науки

Поставить закладку

Напишите нам

Карта сайта

Содержание
Энциклопедия
Новости науки
LHC
Картинка дня
Библиотека
Видеотека
Книжный клуб
Задачи
Масштабы: времена
Детские вопросы
Плакаты
Научный календарь
Наука и право
ЖОБ
Наука в Рунете

Поиск

Подпишитесь на «Элементы»



ВКонтакте
в Твиттере
в Фейсбуке
на Youtube
в Instagram



Библиотека

 
А. Панчин
«Сумма биотехнологии». Глава из книги


И. Левонтина
«О чем речь». Главы из книги


Ч. Уилан
«Голая статистика». Главы из книги


Интервью М. Гельфанда с С. Шлосманом
«Замечательная статья» значит только то, что она содержит замечательный результат


П. Лекутер, Д. Берресон
«Пуговицы Наполеона». Глава из книги


Д. Вибе
Телескопы с жидкими линзами: как это работает


А. Паевский
Ближайший космос. Быстрее. Лучше. Дешевле


Р. Фишман
Прионы: смертоносные молекулы-зомби


Д. Мамонтов
Торий: спасет ли он планету от энергетического кризиса?


Р. Эспарза, Р. Фишман
Марс: научный гид







Главная / Новости науки версия для печати

Доказана роль резкого закисления океана в массовом вымирании на рубеже пермского и триасового периодов


<b>Рис. 1.</b> Схема геологического разреза морских карбонатных осадочных пород конца перми — начала триаса в Объединенных Арабских Эмиратах

Рис. 1. Схема геологического разреза морских карбонатных осадочных пород конца перми — начала триаса в Объединенных Арабских Эмиратах. На палеогеографической карте (вверху справа) желтой звездочкой показан изученный район, который 252 млн лет назад был дном мелководного участка океана Неотетис. Шкала слева показывает толщину слоев в метрах, красные цифры — абсолютный возраст тех слоев, которые удалось точно датировать, в млн лет. PTB — рубеж перми и триаса. EP1, EP2 — первый и второй эпизоды массового вымирания. Графики показывают динамику содержания тяжелых изотопов углерода (δ13C) и бора (δ11B) в карбонатных породах. Изображение из обсуждаемой статьи в Science

Массовое вымирание на рубеже пермского и триасового периодов складывается из двух резких снижений биоразнообразия, разделенных промежутком примерно в 80 тысяч лет. Детальный анализ соотношения изотопов углерода и бора в морских осадочных карбонатных породах, сформировавшихся в конце перми и начале триаса, показал, что второй (но не первый) эпизод вымирания совпадает с резким снижением pH морской воды. По-видимому, закисление океана было вызвано выбросом огромного количества CO2 в ходе формирования Сибирских траппов. Вывод о связи второго эпизода массового вымирания с закислением океана согласуется с тем, что этот эпизод в наибольшей степени затронул именно тех морских животных, которые должны были сильнее всего пострадать от резкого снижения pH: вымерли преимущественно сидячие и малоподвижные организмы с массивными карбонатными скелетами.

Массовое вымирание на рубеже перми и триаса (см.: Массовое пермское вымирание), произошедшее около 252 млн лет назад, было величайшей катастрофой в истории жизни на Земле. Наиболее вероятной причиной вымирания считается трапповый вулканизм (см.: Трапп), а именно формирование Сибирских траппов. В ходе этого процесса за недолгое по геологическим меркам время из недр изверглось несколько миллионов кубических километров магмы. О связи траппового вулканизма с пермотриасовым вымиранием рассказано в новости Связь массовых вымираний с вулканизмом получила новое подтверждение («Элементы», 19.09.2011).

Конкретные механизмы, посредством которых вулканическая активность привела к полному разрушению морских и наземных экосистем и гибели едва ли не всего живого на планете, остаются во многом неясными. Выброс огромного количества вулканических газов (CO2, HCl, H2S и др.) может навредить биосфере разными способами, из которых основными считаются три. Во-первых, рост концентрации атмосферного сероводорода ведет к аноксии океана (Anoxic event). Геологические данные действительно указывают на распространение бескислородных условий на морском шельфе в рассматриваемое время. Во-вторых, парниковые газы вызывают глобальное потепление, что ведет к перегреву поверхностных вод; геологические данные согласуются и с этим предположением. Наконец, резкий рост концентрации CO2 и других вулканических газов в атмосфере, помимо парникового эффекта, может вызвать ацидификацию (закисление) морской воды (см.: Закисление океана), что тоже чревато тяжелыми последствиями, особенно для организмов с минеральными скелетами (см.: Кораллы могут обходиться без скелета, «Элементы», 05.04.2007).

Гипотеза о том, что закисление океана сыграло важную роль в пермотриасовом вымирании, подтверждается некоторыми геологическими данными, однако все эти свидетельства — косвенные и не бесспорные. Чтобы внести больше ясности в этот вопрос, геологи из Великобритании, Германии и Австрии измерили соотношение изотопов бора 10B и 11B (см.: Isotopes of boron) в осадочных породах конца перми — начала триаса на территории Объединенных Арабских Эмиратов, где сохранилась очень подробная геологическая летопись данного временного интервала. 252 млн лет назад территория ОАЭ представляла собой дно мелководного участка океана Тетис, где происходило быстрое карбонатное осадконакопление (рис. 1).

Процентное содержание тяжелого изотопа бора (δ11B) в морских карбонатных осадках определяется комплексом факторов, но сильнее всего оно зависит от кислотности морской воды. При повышении кислотности (то есть при снижении pH) содержание 11B в карбонатах падает (см., например: A. Sanyal et al., 1996. Oceanic pH control on the boron isotopic composition of foraminifera: Evidence from culture experiments). Поэтому геологи используют величину δ11B для оценки pH древних морских бассейнов.

Помимо δ11B, авторы измерили в изучаемых породах также и содержание тяжелого изотопа углерода (δ13C). Колебания этого показателя в морских карбонатных осадках отражают долю 13C в атмосферном CO2 и связаны со сложным комплексом биотических и абиотических факторов. К их числу относится вулканизм, выветривание силикатов и карбонатов, темп морского осадконакопления, интенсивность фотосинтеза и биологического круговорота углерода, а также темп захоронения органики на континентах. В частности, при фотосинтезе растения используют для производства органики преимущественно легкий изотоп 12С, причем значительная часть образующейся органики захоранивается на континентах. Это в конечном счете ведет к обогащению атмосферы и морских карбонатных осадков тяжелым изотопом 13С. Если биологический круговорот углерода приостанавливается (например, из-за массового вымирания), доля 13С в морских осадочных породах может резко снизиться. К другим возможным причинам снижения δ13C относится вулканизм, поскольку углерод мантийного вещества обычно имеет облегченный изотопный состав по сравнению с углеродом атмосферного CO2 и карбонатных пород земной коры.

Результаты проведенных авторами измерений показаны на рис. 1. Для интерпретации результатов использовалась сложная математическая модель, учитывающая множество дополнительных показателей (гидрологических, геохимических, климатических и др.), так или иначе связанных с динамикой δ13C и δ11B.

В итоге вырисовалась следующая картина. В нижней части изученного геологического разреза (в породах старше 252,04 млн лет) показатель δ13C был устойчиво высоким. Иными словами, признаков усиленного вулканизма или приостановки биологического цикла углерода в это время не наблюдалось. При этом показатель δ11B оставался на уровне, свидетельствующем о средних, типичных для пермского океана значениях pH. Затем, около 252,04 млн лет назад (за 80 тысяч лет до первого эпизода великого вымирания), показатель δ11B резко вырос. Это означает, что морская вода стала более щелочной. Показатель δ13C при этом остался высоким.

В качестве возможных причин повышения pH морской воды в конце пермского периода авторы, основываясь на результатах моделирования, отмечают произошедшее в это время понижение уровня моря (регрессию), усиление выветривания силикатных и карбонатных пород, распространение безкислородных условий на мелководье и снижение глобальной скорости карбонатного осадконакопления.

Несколько позже (252,00 млн лет назад, за 40 тысяч лет до кульминации первого этапа вымирания) началось резкое снижение δ13C, однако значение δ11B при этом оставалось высоким (океан оставался щелочным). Первый эпизод великого вымирания произошел на фоне снижающегося δ13C и по-прежнему высоких значений δ11B. Моделирование показало, что такую картину можно объяснить комбинацией двух процессов: прекращением захоронения органики на континентах (из-за гибели наземной флоры и фауны, которая, по-видимому, предшествовала массовому вымиранию в море) и дополнительным поступлением в атмосферу углерода с облегченным изотопным составом, которое должно было продолжаться долго (примерно 50 тысяч лет). Возможно, источником этого углерода были вулканические газы, вырывавшиеся в атмосферу на ранних этапах формирования Сибирских траппов. Поскольку поступление вулканического CO2 на этом этапе было постепенным, карбонатно-бикарбонатный буфер океана справлялся с ним и удерживал pH на прежнем высоком уровне.

Второй этап великого вымирания (на рис. 1 он обозначен как EP2) произошел уже в начале триасового периода, 251,88 млн лет назад. Как раз в это время отмечается резкое снижение δ11B, свидетельствующее о катастрофическом закислении океана. Как и следовало ожидать, в этот момент наиболее сильному вымиранию подверглись организмы, наиболее уязвимые для подобных перемен среды. Это были, прежде всего, сидячие и малоподвижные морские организмы с карбонатными скелетами (которые при низких pH растворяются): моллюски, кораллы, мшанки, иглокожие. В это же время практически полностью прекратилось биогенное (с участием микроорганизмов) и абиогенное осаждение карбонатов во всем океане Тетис.

Объяснить столь сильное и быстрое закисление океана можно только новым выбросом больших количеств CO2 в атмосферу. Этот второй выброс был намного более стремительным, чем первый. Вероятнее всего, источником углерода и на этот раз были Сибирские траппы, проходившие теперь более поздние этапы своего формирования. Парадоксальным образом, на этот раз никакого снижения δ13C не произошло. Это значит, что изотопный состав вулканического углерода теперь был другим — не таким облегченным. Этому есть логичное объяснение: к мантийному углероду с низким содержанием 13C (δ13C ≈ −5‰) теперь должен был добавиться углерод, выделяющийся из карбонатных пород, с которыми подошедшая к поверхности Земли расплавленная магма вступила в непосредственный контакт. У этих пород значение δ13C было выше (от +2 до +4‰). В итоге углекислый газ, выброшенный в атмосферу в этот период, имел значение δ13C, близкое к 0‰.

Таким образом, исследование показало, что причины первого и второго эпизодов великого вымирания различались. В первом случае ключевую роль, по всей видимости, сыграла аноксия и климатические изменения (возможно, в комплексе с другими факторами), но закисления океана тогда еще не было. Резкое падение pH морской воды было основной причиной второго, но не первого эпизода вымирания.

Чтобы вызвать катастрофическое закисление океана на рубеже перми и триаса, потребовался выброс в атмосферу порядка 24 триллионов тонн углерода. Скорость выброса CO2 была сопоставима с той, которую сегодня обеспечивает человечество, сжигая ископаемое топливо, но суммарный объем был больше. Авторы отмечают, что если сжечь все «традиционные» типы ископаемого топлива (нефть, уголь), это обеспечит поступление в атмосферу лишь 5 трлн тонн углерода. Чтобы добиться эффекта, сопоставимого с пермотриасовой катастрофой, нужно сжечь также и все «нетрадиционные» виды ископаемого горючего, такие как гидрат метана.

Источник: M. O. Clarkson, S. A. Kasemann, R. A. Wood, T. M. Lenton, S. J. Daines, S. Richoz, F. Ohnemueller, A. Meixner, S. W. Poulton, and E. T. Tipper. Ocean acidification and the Permo-Triassic mass extinction // Science. 2015. V. 348. P. 229–232.

См. также:
1) Связь массовых вымираний с вулканизмом получила новое подтверждение, «Элементы», 19.09.2011.
2) Обнаружена корреляция между изменениями в составе морских осадков и вымиранием морских животных, «Элементы», 20.06.2008.
3) В прошлые эпохи постепенное потепление климата сопровождалось внезапным кризисом биоты, «Элементы», 03.07.2009.

Александр Марков


Комментарии (9)



Последние новости: КлиматЭволюцияПалеонтологияГеологияАлександр Марков

21.06
Кишечная бактерия влияет на социальное поведение мышей
16.06
В Старом и Новом Свете птицы сходно реагируют на глобальное потепление
15.06
Получение генов пектиназ от протеобактерий резко ускорило видообразование палочников
14.06
Полиплоидность предков эукариот — ключ к пониманию происхождения митоза и мейоза
8.06
Новые древние остатки людей с острова Флорес говорят о родстве «хоббитов» с эректусами
6.06
Промышленный меланизм бабочек получил генетическое объяснение
2.06
Обнаружено фундаментальное сходство между развитием актинии и развитием позвоночных
1.06
Половой отбор сделал сперматозоиды дрозофил самыми длинными в мире
24.05
Клещи ездили на насекомых уже 320 миллионов лет назад
23.05
В Китае найдены древнейшие многоклеточные водоросли

Научная картинка дня


Новости науки по темам: антропология, археология, астрономическая научная картинка дня, астрономия, биология, биотехнологии, генетика, геология, затмения, информационные технологии, космос, лингвистика, математика, медицина, нанотехнологии, наука в России, наука и общество, Нобелевские премии, палеонтология, Первое апреля, психология, технологии, физика, химия, эволюция, экология, энергетика, этология

Новости науки по авторам: Валентин Анаников, Дарья Баранова, Вера Башмакова, Александр Бердичевский, Максим Борисов, Варвара Веденина, Александр Венедюхин, Михаил Волович, Михаил Гарбузов, Алексей Гиляров, Дмитрий Гиляров, Сергей Глаголев, Евгений Гордеев, Николай Горностаев, Владимир Гриньков, Дмитрий Дагаев, Юрий Ерин, Анастасия Еськова, Дмитрий Жарков, Андрей Журавлёв, Дмитрий Замолодчиков, Игорь Иванов, Вячеслав Калинин, Павел Квартальнов, Мария Кирсанова, Дмитрий Кирюхин, Александр Козловский, Юлия Кондратенко, Артем Коржиманов, Ольга Кочина, Виталий Кушниров, Иван Лаврёнов, Алексей Левин, Андрей Логинов, Сергей Лысенков, Лейла Мамирова, Александр Марков, Мария Медникова, Вадим Мокиевский, Григорий Молев, Тарас Молотилин, Марат Мусин, Максим Нагорных, Елена Наймарк, Алексей Опаев, Петр Петров, Александр Пиперски, Константин Попадьин, Сергей Попов, Роман Ракитов, Татьяна Романовская, Александр Самардак, Александр Сергеев, Андрей Сидоренко, Виктория Скобеева, Даниил Смирнов, Дарья Спасская, Любовь Стрельникова, Алексей Тимошенко, Александр Токарев, Мария Шнырёва, Сергей Ястребов, Светлана Ястребова

Новости науки по месяцам: 2016 VI, V, IV, III, II, I  2015 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2014 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2013 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2012 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2011 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2010 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2009 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2008 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2007 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2006 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2005 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I 

Новости науки почтой (рассылка на Subscribe.ru):

 


Где еще почитать научные новости: «Биомолекула», «Вокруг света», Газета.ру. Наука, «Наука и жизнь», Наука и технологии РФ, «Научная Россия», «Популярная механика», РИА Наука, «Чердак», N+1, Naked Science

 


при поддержке фонда Дмитрия Зимина - Династия