Элементы Элементы большой науки

Поставить закладку

Напишите нам

Карта сайта

Содержание
Энциклопедия
Новости науки
LHC
Картинка дня
Библиотека
Видеотека
Книжный клуб
Задачи
Масштабы: времена
Детские вопросы
Плакаты
Научный календарь
Наука и право
ЖОБ
Наука в Рунете

Поиск

Подпишитесь на «Элементы»



ВКонтакте
в Твиттере
в Фейсбуке
на Youtube
в Instagram



Библиотека

 
Ли Биллингс
«5 000 000 000 лет одиночества». Глава из книги


А. Панчин
«Сумма биотехнологии». Глава из книги


И. Левонтина
«О чем речь». Главы из книги


А. Водовозов
С запахом горького миндаля


В. Власюк
50 лет САО


Ч. Уилан
«Голая статистика». Главы из книги


Интервью М. Гельфанда с С. Шлосманом
«Замечательная статья» значит только то, что она содержит замечательный результат


П. Лекутер, Д. Берресон
«Пуговицы Наполеона». Глава из книги


Д. Вибе
Телескопы с жидкими линзами: как это работает


А. Паевский
Ближайший космос. Быстрее. Лучше. Дешевле







Главная / Новости науки версия для печати

Шагающий биомеханизм создан из напечатанных на 3D-принтере элементов и искусственно выращенных скелетных мышц


Рис. 1. Конструкция шагающего биомеханизма

Рис. 1. Конструкция шагающего механизма напоминает две части конечности, соединенные суставом. Роль «костей» и «сухожилий» выполнила деталь, напечатанная на 3D-принтере, мышцы были выращены в лабораторных условиях из мышиных миобластов. Рисунок из дополнительных материалов к обсуждаемой статье

Американские исследователи сконструировали простейший шагающий механизм, воспроизводящий устройство двух частей конечности, соединенных суставом. Сокращения мышцы обеспечиваются двумя «ножками», присоединенными своими концами к гибкой пластине. Передвигается это простое устройство под действием электрических импульсов, которые с определенной частотой подаются в питательную среду, в которой оно находится.

Мы привыкли думать о роботах как о сложных металлических конструкциях со строго контролируемым и предсказуемым поведением. Для создания таких машин используются традиционные методы производства, а методики и подходы к работе с материалом могут быть позаимствованы у автомобильной промышленности и электроники. Однако металлические роботы не способны справиться с целым рядом деликатных задач (забавный пример — так и не решенная проблема с автоматизацией упаковки яиц). Помимо трудностей с выполнением отдельных задач у металлических роботов существуют и более глобальные проблемы, препятствующие их широкому внедрению. В частности, жесткий корпус делает конструкцию робота прочной и надежной, но не безопасной для окружающих его живых существ. Появление металлических роботов в квартирах и офисах могло бы потребовать создания сложной системы передвижения, аналогичной системе автомобильных дорог, и даже введения соответствующих правил движения. Другая принципиальная проблема с такими роботами — трудность создания большого числа степеней свободы. Движения металлических роботов всё еще остаются достаточно примитивными, так что развитие «тел» роботов пока существенно отстает от уровня развития их «мозгов», которые программисты уже способны научить мыслить достаточно гибко.

На фоне всго этого новая ветвь развития робототехники — создание мягких роботов с гибкими корпусами, не имеющими жестких шарнирных конструкций внутри, — выглядит достаточно перспективной. Многие конструкторы таких роботов черпают вдохновение у природы. Так, итальянские исследователи создали искусственные аналоги щупалец осьминога, а американские ученые недавно сконструировали мягкого робота-рыбу, передвигающегося за счет подачи разных порций углекислого газа в полости его тела.

Развивается и еще более интересный подход к созданию мягких роботов: биоинженерия с использованием искусственно выращенных тканей. Таким способом уже была получена искусственная медуза, созданная из выращенной на силиконовой основе сердечной мускулатуры. Однако ввиду своей способности сокращаться самопроизвольно, сердечная мускулатура не является лучшим материалом для создания роботов с контролируемым поведением. Более перспективным представляется использование скелетной мускулатуры, предназначенной природой для совершения произвольных движений, в том числе — и сознательно контролируемых.

Американские исследователи из нескольких университетов выбрали для своего биомеханизма максимально простую конструкцию, фактически воспроизведя устройство двух частей конечности, соединенных суставом (рис. 1). Сокращения мышцы, присоединенной своими концами через две «ножки» к гибкой пластине, изгибают ее. Если «ножки» имеют разную длину, то после расслабления мышцы конструкция делает шаг в направлении более короткой «ножки». «Ножки», соответствующие сухожилиям сустава, и соединяющую их пластину, соответствующую костям в суставе, заменяла собой единая деталь, напечатанная на 3D-принтере из гидрогеля, причем часть, соответствующая костям, была сделана менее гибкой, а части, соответствующие сухожилиям, — более гибкими.

Затем между «ножками» механизма нанесли суспензию миобластов мыши в геле, содержащем компоненты природного межклеточного матрикса: ламинин, энтактин, коллаген, фибриноген и тромбин. Для нормального функционирования искусственных мышц также оказались необходимы инсулиноподобный фактор роста-1 (IGF-1) и ингибиторы протеаз — выделяемых клетками ферментов, которые могли бы нарушить структуру искусственного матрикса вокруг них. В таком матриксе клетки могут размножаться, а структура получившейся мышцы оказыватся достаточно гибкой для ее сокращения. Варьируя концентрации клеток и компонентов матрикса в суспензии, можно влиять на свойства мышцы, а изменение количества IGF-1 в среде влияет на скорость ее созревания. Важно, что при отсутствии сосудов в такой простой системе можно получить лишь достаточно тонкую мышцу, иначе доступ кислорода к клеткам в ее центральной части будет затруднен (рис. 2).

Рис. 2. Выращивание искусственной мышцы для биомеханизма

Рис. 2. Выращивание искусственной мышцы для биомеханизма. Длина масштабных линеек 1 мм. Рисунок из обсуждаемой статьи

Передвигается это простое устройство под действием электрических импульсов, которые с определенной частотой подаются в питательную среду, в которой оно находится. К устройствам на основе скелетных мышц можно применять и другие методы управления, например оптогененетический, когда сокращения мышц запускаются воздействием света с определенной длинной волны (см. Mahmut Sakar et al., 2012. Formation and Optogenetic Control of Engineered 3D Skeletal Muscle Bioactuators). Для этого мышцы нужно выращивать из миобластов, в которые введен ген катионного канала родопсина-2, запускающего в клетку катионы при воздействии голубого света. Когда в клетку входят катионы кальция, мышца сокращается.

Контролируемые внешними сигналами биороботы являются перспективными объектами для будущих разработок. В данном случае интерес представляет простота модели; однако модель может быть усложнена: например, путем добавления других типов клеток. Хорошо бы еще было добиться роста сосудов, чтобы можно было увеличивать толщину мышц, а также иннервации, что дало бы невероятно интересные перспективы получить реагирующих на внешние стимулы биороботов. С иннервацией искусственных тканей дела пока обстоят сложно, зато с ростом сосудов в искусственных органах есть определенные успехи (см. Выращенный в лаборатории зачаток печени превратился в организме мыши в функционирующий орган, «Элементы», 28.08.2013).

Рис. 3. «Многоножки» на основе соединения нескольких шагающих модулей

Рис. 3. «Многоножки» на основе соединения нескольких шагающих модулей. Длина масштабных линеек 2 мм. Рисунок из дополнительных материалов к обсуждаемой статье

Из подобных простых модулей можно также собрать забавные многоногие биомеханизмы, эскизы которых авторы прилагают к своей статье (рис. 3). 3D-печать уже распространена достаточно широко, и, возможно, не за горами времена, когда кружки занимательной биоинженерии появятся в каждой уважающей себя школе.

Источник: C. Cvetkovic et al. Three-dimensionally printed biological machines powered by skeletal muscle // PNAS. 2014. DOI:10.1073/pnas.1401577111.

Юлия Кондратенко


Комментарии (16)



Последние новости: БиомеханикаЮлия Кондратенко

15.03
Регуляторные элементы вирусного происхождения помогают работе нашего иммунитета
5.02
Удаление стареющих клеток продлевает мышам жизнь
25.01
Ящерицы тегу в период размножения становятся теплокровными
16.12
Плохая пространственная память способствует изменам
30.11
Змеи отказались от конечностей, чтобы приспособиться к роющему образу жизни
23.11
Минеральные глаза моллюсков хитонов способны различать форму объекта
10.11
Пол цветка определяется взаимодействием трех генов
23.10
Родина собак — Центральная Азия
1.10
Способность к эмпатии зависит от чувствительности к боли
28.08
Выбор брачного партнера у лягушек может быть иррациональным

Научная картинка дня


Новости науки по темам: антропология, археология, астрономическая научная картинка дня, астрономия, биология, биотехнологии, генетика, геология, затмения, информационные технологии, космос, лингвистика, математика, медицина, нанотехнологии, наука в России, наука и общество, Нобелевские премии, палеонтология, Первое апреля, психология, технологии, физика, химия, эволюция, экология, энергетика, этология

Новости науки по авторам: Валентин Анаников, Дарья Баранова, Вера Башмакова, Александр Бердичевский, Максим Борисов, Варвара Веденина, Александр Венедюхин, Михаил Волович, Михаил Гарбузов, Алексей Гиляров, Дмитрий Гиляров, Сергей Глаголев, Евгений Гордеев, Николай Горностаев, Владимир Гриньков, Дмитрий Дагаев, Юрий Ерин, Анастасия Еськова, Дмитрий Жарков, Андрей Журавлёв, Дмитрий Замолодчиков, Игорь Иванов, Вячеслав Калинин, Павел Квартальнов, Мария Кирсанова, Дмитрий Кирюхин, Александр Козловский, Юлия Кондратенко, Артем Коржиманов, Ольга Кочина, Виталий Кушниров, Иван Лаврёнов, Алексей Левин, Андрей Логинов, Сергей Лысенков, Лейла Мамирова, Александр Марков, Мария Медникова, Вадим Мокиевский, Григорий Молев, Тарас Молотилин, Марат Мусин, Максим Нагорных, Елена Наймарк, Алексей Опаев, Петр Петров, Александр Пиперски, Константин Попадьин, Сергей Попов, Роман Ракитов, Татьяна Романовская, Александр Самардак, Александр Сергеев, Андрей Сидоренко, Виктория Скобеева, Даниил Смирнов, Дарья Спасская, Любовь Стрельникова, Алексей Тимошенко, Александр Токарев, Мария Шнырёва, Сергей Ястребов, Светлана Ястребова

Новости науки по месяцам: 2016 VI, V, IV, III, II, I  2015 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2014 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2013 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2012 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2011 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2010 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2009 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2008 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2007 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2006 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2005 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I 

Новости науки почтой (рассылка на Subscribe.ru):

 


Где еще почитать научные новости: «Биомолекула», «Вокруг света», Газета.ру. Наука, «Наука и жизнь», Наука и технологии РФ, «Научная Россия», «Популярная механика», РИА Наука, «Чердак», N+1, Naked Science

 


при поддержке фонда Дмитрия Зимина - Династия