Элементы Элементы большой науки

Поставить закладку

Напишите нам

Карта сайта

Содержание
Энциклопедия
Новости науки
LHC
Картинка дня
Библиотека
Видеотека
Книжный клуб
Задачи
Масштабы: времена
Детские вопросы
Плакаты
Научный календарь
Наука и право
ЖОБ
Наука в Рунете

Поиск

Подпишитесь на «Элементы»



ВКонтакте
в Твиттере
в Фейсбуке
на Youtube
в Instagram



Библиотека

 
Р. Найт
«Смотри, что у тебя внутри». Глава из книги


К. Циммер
«Микрокосм». Глава из книги


Н. Резник
Как черепахи нарыли себе панцирь


Интервью с Б. Янишем
Наследники Поппера


А. Гуков
Крупные животные Арктики: сколько их осталось?


А. Огнёв
Откуда жизнь? Еще теплее!


Р. Докинз
«Эгоистичный ген». Глава из книги


А. Бердников
Вдоль по лунной дорожке


В. Бабицкая, С. Горбунов
Как и зачем птицы общаются с охотниками за медом


Е. Чернова
Хаос и порядок: фрактальный мир







Главная / Новости науки версия для печати

Выращенный в лаборатории зачаток печени превратился в организме мыши в функционирующий орган


Рис. 1. Схема эксперимента

Рис. 1. Схема эксперимента. Из плюрипотентных клеток человека (iPSC) получали клетки энтодермы печени (iPSC-HE, клетки энтодермы печени — предшественники зрелых клеток печени). Эти клетки культивировали на чашке Петри вместе с мезенхимными клетками (MSC) и клетками эндотелия сосудов (HUVEC). После формирования компактного зачатка печени его пересаживали иммунодефицитным мышам и исследовали функционирование трансплантата. Изображение из обсуждаемой статьи в Nature

Японским исследователям удалось создать трансплантат печени необычным методом: они не стали выращивать искусственный орган вне организма целиком, а получили в лаборатории лишь его зачаток, напоминающий эмбриональный. Спустя двое суток после вживления такого зачатка печени в организм подопытного животного трансплантат прирастал к кровеносным сосудам хозяина и начинал функционировать и развиваться. При искусственном запуске гепатита трансплантат помогал подопытному животному выжить, беря на себя функции его печени.

Получение искусственных органов из индуцированных плюрипотентных клеток — область исследований, стремительно прогрессирующая прямо у нас на глазах. Некоторое время назад на «Элементах» мы рассказывали о создании искусственных костей (см.: Костные трансплантаты можно получать из перепрограммированных человеческих клеток, 11.07.2013); для этого клетки — предшественники костной ткани выращивались на специальной основе, полученной из кости теленка после удаления его клеток. А недавно в журнале Nature Communications появилась статья о получении искусственного сердца, по сути дела, тем же методом — культивированием человеческих клеток на каркасе, полученном из сердца мыши, из которого были удалены все мышиные клетки (см.: Tung-Ying Lu et al., 2013. Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells).

Кроме того, методу выращивания искусственных органов вне организма реципиента была найдена интересная альтернатива: оказывается, в лаборатории достаточно получить лишь зачаток будущего органа, который при вживлении в организм будущего хозяина разовьется в полноценный орган с требуемыми характеристиками. Эффективность такого подхода продемонстрировала группа японских исследователей, получив трансплантаты человеческой печени из выращенных в лаборатории небольших зачатков, напоминающих эмбриональные.

Такие зачатки устроены несравненно проще, чем зрелые органы, поэтому для их выращивания не нужны сложные биореакторы и структурные основы анатомической формы. Для получения зачатка печени необходимо иметь лишь клетки нескольких типов: клетки сосудов, мезенхимные стволовые клетки, а также клетки энтодермы печени, соответствующие тем клеткам кишки зародыша, которые выпячиваются от нее, образуя зачаток будущей печени. Последние клетки получали из индуцированных плюрипотентных клеток человека, превращая их сначала в клетки энтодермы (клетки первичной кишки зародыша), а затем в клетки энтодермы печени, в которых уже работают некоторые характерные для клеток зрелой печени гены (рис. 1). При правильном количественном соотношении этих типов клеток, а также при культивации их на подходящей подложке создаются условия, напоминающие те, в которых формируется зачаток печени эмбриона. При этом клетки, растущие на обычной чашке Петри, формируют компактную структуру, которую можно успешно пересадить в организм-реципиент (см. рис. 2, рис. 3, а также видео).

Рис. 2. Образование компактного зачатка печени при совместной культивации на чашке Петри мезенхимных клеток, клеток эндотелия сосудов и клеток энтодермы печени

Рис. 2. Образование компактного зачатка печени при совместной культивации на чашке Петри мезенхимных клеток, клеток эндотелия сосудов и клеток энтодермы печени. Изображение из обсуждаемой статьи в Nature

Зачатки печени вживляли в брыжейку подопытного животного или же в его голову. Преимущество последнего, казалось бы, странного метода заключается в возможности наблюдать за развитием трансплантата при жизни мыши. В этом случае в черепе животного прорезают небольшое окно, в которое вживляется зачаток печени, а сверху отверстие закрывают тонким стеклом. Таким образом, развивающийся зачаток печени виден сквозь стекло, и нет необходимости забивать животное и извлекать трансплантат, чтобы изучать его развитие.

Рис. 3. Компактный зачаток печени образуется лишь при выращивании клеток на подходящей подложке (рисунок справа)

Рис. 3. Компактный зачаток печени образуется лишь при выращивании клеток на подходящей подложке (рисунок справа). LAM — ламинин, COL — коллаген IV, ENT — энтактин. Изображение из обсуждаемой статьи в Nature

Спустя два дня после операции сосуды мыши, которой был пересажен зачаток печени, срастались с сосудами трансплантата, а на третий день по ним устанавливался нормальный кровоток. При этом клетки вживленного зачатка печени размножались, а сеть ее сосудов расширялась и усложнялась (рис. 4). Для оценки зрелости клеток трансплантата в крови подопытных животных измерялся уровень человеческого сывороточного альбумина (см. Human serum albumin). Этот белок синтезируется клетками печени, и измерение его количества позволяет судить о функции печени. Человеческий сывороточный альбумин появлялся в крови подопытных животных спустя десять суток после трансплантации, а затем его количество постоянно росло, что свидетельствовало о созревании клеток вживленного зачатка человеческой печени. Также при помощи анализа уровней активности различных генов было выявлено, что спустя два месяца после трансплантации основная часть клеток вживленного зачатка печени превратилась в зрелые клетки.

Рис. 4. Развитие сети сосудов в пересаженном подопытному животному зачатке человеческой печени

Рис. 4. Развитие сети сосудов в пересаженном подопытному животному зачатке человеческой печени. Зеленым показаны клетки сосудов, красным — мезенхимные стволовые клетки, из которых формируются перициты (клетки, необходимые для поддержания стабильности сети сосудов). Изображение из обсуждаемой статьи в Nature

Интересно, что вживленная мыши печень, полученная из человеческих клеток, продолжала функционировать характерным для человека образом. Помимо активного производства вышеупомянутого человеческого сывороточного альбумина она осуществляла и другие свои функции «по-человечески».

Одна из ключевых обязанностей печени — это обезвреживание различных чужеродных для организма веществ путем превращения их в другие соединения, менее токсичные и легче выводимые из организма. Разрушаются в печени и лекарства, также представляющие собой чужеродные для организма вещества. Пути таких превращений одних и тех же веществ могут отличаться у разных организмов. В частности, известны определенные лекарства — кетопрофен и дебризоквин (Debrisoquine) — которые преобразуются разными способами в печени человека и в печени мыши.

Трансплантаты печени, полученные из человеческих клеток, преобразовывали кетопрофен и дебризоквин по пути, свойственному для человека, но не свойственному для мыши. Поэтому, мыши с такими трансплантатами могут быть использованы как модели для изучения метаболизма человека.

Для проверки качества работы полученных таким методом трансплантатов печени использовалась особая линия мышей, у которых можно было вызывать гепатит при введении им небольшой дозы дифтерийного токсина. Спустя неделю после вживления зачатка человеческой печени запускалось заболевание собственной печени животного, и выживаемость животных, которым была сделана такая операция, значительно превосходила выживаемость животных, которым не был вживлен трансплантат. Таким образом было продемонстрировано, что вживляемый зачаток печени уже спустя неделю после пересадки способен достаточно эффективно выполнять свои функции.

Важным результатом работы можно считать демонстрацию ключевой роли клеточного окружения, в котором формируется зачаток будущего органа, на последующее его функционирование. Так, из плюрипотентных клеток можно вырастить отдельно клетки печени и пересадить их подопытному животному, однако такие клетки будут работать менее эффективно, чем клетки, изначально выращивавшиеся в окружении мезенхимных и сосудистых клеток и пересаженные в организм уже в виде зачатка будущей печени.

Авторам работы удалось искусственным путем получить функционирующие зачатки человеческой печени, способные продолжать развитие при пересадке в организм реципиента. Зачатки были получены благодаря созданию для клеток энтодермы печени клеточного окружения, сходного с эмбриональным, и оказалось, что посылаемых клетками друг другу сигналов достаточно, чтобы образовался зачаток печени правильной формы, даже если выращивать клетки просто на плоской поверхности.

Это означает, что при получении искусственных органов крайне важно подобрать начальный состав клеток: должны присутствовать не только клетки, которые будут основными рабочими клетками будущего органа, но также и клетки, которые будут посылать им необходимые для правильного развития сигналы. Количественный состав и подложка, на которой растут клетки, также важны для образования зачатка органа. Если условия формирования зачатка в достаточной степени напоминают естественные условия, в которых этот орган образуется у человеческого эмбриона, в дальнейшем полученный зачаток с большой долей вероятности будет развиваться оптимальным образом, и орган может быть сформирован окончательно уже в организме реципиента. При получении искусственных органов таким методом отпадает необходимость в сложных биореакторах анатомической формы, а также в поиске способа организации правильной внутренней структуры органа, так как она будет формироваться преимущественно уже в организме реципиента, подстраиваясь под него. Успех японских исследователей позволяет надеяться на эффективность этого интересного подхода к получению трансплантатов.

Источник: Takanori Takebe, Keisuke Sekine, Masahiro Enomura, Hiroyuki Koike, Masaki Kimura, Takunori Ogaeri, Ran-Ran Zhang, Yasuharu Ueno, Yun-Wen Zheng, Naoto Koike, Shinsuke Aoyama, Yasuhisa Adachi & Hideki Taniguchi. Vascularized and functional human liver from an iPSC-derived organ bud transplant // Nature. Published online 4 July 2013. Doi:10.1038/nature12271.

Юлия Кондратенко


Комментарии (9)



Последние новости: БиотехнологииЮлия Кондратенко

31.03
Успех размножения плоских червей определяется качеством их спермы, а не количеством спариваний
28.03
Изготовлена бактерия с синтетическим минимальным геномом
15.03
Регуляторные элементы вирусного происхождения помогают работе нашего иммунитета
05.02
Удаление стареющих клеток продлевает мышам жизнь
25.01
Ящерицы тегу в период размножения становятся теплокровными
06.01
Нефотосинтезирующую бактерию можно обучить фотосинтезу, поместив ее в подходящую среду
16.12
Плохая пространственная память способствует изменам
30.11
Змеи отказались от конечностей, чтобы приспособиться к роющему образу жизни
23.11
Минеральные глаза моллюсков хитонов способны различать форму объекта
10.11
Пол цветка определяется взаимодействием трех генов

Научная картинка дня


Новости науки по темам: антропология, археология, астрономическая научная картинка дня, астрономия, биология, биотехнологии, генетика, геология, затмения, информационные технологии, космос, лингвистика, математика, медицина, нанотехнологии, наука в России, наука и общество, Нобелевские премии, палеонтология, Первое апреля, психология, технологии, физика, химия, эволюция, экология, энергетика, этология

Новости науки по авторам: Валентин Анаников, Дарья Баранова, Вера Башмакова, Александр Бердичевский, Максим Борисов, Варвара Веденина, Александр Венедюхин, Михаил Волович, Михаил Гарбузов, Алексей Гиляров, Дмитрий Гиляров, Сергей Глаголев, Евгений Гордеев, Николай Горностаев, Владимир Гриньков, Дмитрий Дагаев, Юрий Ерин, Анастасия Еськова, Дмитрий Жарков, Андрей Журавлёв, Дмитрий Замолодчиков, Игорь Иванов, Вячеслав Калинин, Павел Квартальнов, Мария Кирсанова, Дмитрий Кирюхин, Александр Козловский, Юлия Кондратенко, Артем Коржиманов, Ольга Кочина, Аркадий Курамшин, Виталий Кушниров, Иван Лаврёнов, Алексей Левин, Андрей Логинов, Сергей Лысенков, Лейла Мамирова, Александр Марков, Мария Медникова, Вадим Мокиевский, Григорий Молев, Тарас Молотилин, Антон Морковин, Марат Мусин, Максим Нагорных, Елена Наймарк, Алексей Опаев, Петр Петров, Александр Пиперски, Константин Попадьин, Сергей Попов, Роман Ракитов, Татьяна Романовская, Александр Самардак, Александр Сергеев, Андрей Сидоренко, Виктория Скобеева, Даниил Смирнов, Павел Смирнов, Дарья Спасская, Любовь Стрельникова, Дмитрий Сутормин, Алексей Тимошенко, Александр Токарев, Александр Храмов, Мария Шнырёва, Сергей Ястребов, Светлана Ястребова

Новости науки по месяцам: 2016 IX, VIII, VII, VI, V, IV, III, II, I  2015 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2014 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2013 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2012 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2011 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2010 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2009 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2008 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2007 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2006 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2005 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I 

Новости науки почтой (рассылка на Subscribe.ru):

 


Где еще почитать научные новости: «Биомолекула», «Вокруг света», Газета.ру. Наука, «Наука и жизнь», Наука и технологии РФ, «Научная Россия», «Популярная механика», РИА Наука, «Чердак», N+1, Naked Science

 


при поддержке фонда Дмитрия Зимина - Династия