Элементы Элементы большой науки

Поставить закладку

Напишите нам

Карта сайта

Содержание
Энциклопедия
Новости науки
LHC
Библиотека
Видеотека
Книжный клуб
Задачи
Детские вопросы
Плакаты
Научный календарь
Наука и право
ЖОБ
Наука в Рунете

Поиск

Подпишитесь на новости науки


 
(на Subscribe.ru)



Библиотека

 
Ю. Чёрная
Заглянуть в мозг первоклассника


И. Левонтина
Русский национальный


Интервью с В. Саньковым и Ю. Ясюкевичем
Отсель грозить мы будем шведу GPSом


Интервью с С. Гордиенко
«Первые пять номеров я выпустил в одиночку»


Е. Кунин
«Логика случая». Введение


Н. Шакура
Долгая дорога к вершине «Зельдович»


А. Марков, Е. Наймарк
«Эволюция. Классические идеи в свете новых открытий». Глава из книги


Интервью с А. Сосинским
«Я люблю звучание испанского»


В. Парафонова
Лазер тушит пожары


Интервью с А. Варшавским
«Не будь ортогонален поискам в темноте»







Главная / Новости науки версия для печати

Ротор из ДНК совершил два оборота на глазах у своих создателей


Рис. 1. Схема перехода ротора (показан красным цветом) ДНК-мотора из B-формы в Z-форму при увеличении концентрации ионов Mg2+ и обратного перехода при уменьшении концентрации ионов

Рис. 1. Вверху: схема поворота ротора (показан красным цветом) ДНК-мотора (то есть перехода из B-формы в Z-форму) при увеличении концентрации ионов Mg2+ и обратного перехода при уменьшении концентрации ионов. Внизу: изображения, полученные при помощи атомной силовой микроскопии и подтверждающие, что переход произошел. Рисунок из обсуждаемой статьи в Journal of American Chemical Society

Группа японских ученых сконструировала наномотор, работающий за счет смены конформации молекулой ДНК — перехода двойной спирали из правозакрученной (B-форма) в левозакрученную (Z-форма). «Запуск» мотора осуществляется путем изменения концентрации ионов в растворе. Закрепив мотор в жесткой рамке, которая фиксирует его на подложке, не мешая при этом вращению ротора, ученые смогли при помощи атомной силовой микроскопии проследить за работой мотора в режиме реального времени. Они зафиксировали два оборота ротора, что соответствует одному B-Z-переходу.

В последние годы ДНК стала популярным материалом для наномоделирования. При помощи техники ДНК-оригами (см. DNA origami) можно получать двумерные конструкции требуемой формы (см. статью создателя техники ДНК-оригами Пола Ротмунда Folding DNA to create nanoscale shapes and patterns // Nature. 2006. V. 440. P. 297–302), а недавно разработанная методика применения ДНК-кирпичиков, напоминающих детали конструктора LEGO, позволяет получать и объемные конструкции (см. заметку Наноструктуры из ДНК можно собирать по принципу конструктора «Лего», «Элементы», 04.12.2012). При этом возможности искусственно созданных конструкторов из ДНК не ограничиваются ролью пассивных строительных блоков: уже синтезированы молекулы ДНК, обладающие каталитическими функциями (см: S. Santoro, G. Joyce, 1997. A general purpose RNA-cleaving DNA enzyme), и даже созданы примитивные нанороботы на их основе (см.: Kyle Lund et al., 2010. Molecular Robots Guided by Prescriptive Landscapes). А недавно удалось получить функциональную структуру, аналогичную ионному каналу (см.: Немецкие биотехнологи создали из ДНК искусственные ионные каналы, «Элементы», 20.11.2012).

Группа японских ученых из Токио и Киото использовала ДНК в качестве строительного материала для «корпуса» и подвижной части («ротора») мотора, а запасенная в конформации молекулы ДНК энергия расходовалась на работу мотора.

ДНК представляет собой цепочку (полимер) из нуклеотидов, состоящих из остатка фосфорной кислоты, дезоксирибозы и азотистого основания. Азотистое основание может быть одного из четырех типов: аденин, гуанин, цитозин или тимин (их обозначают латинскими буквами A, G, С и T соответственно). Поскольку нуклеотиды отличаются между собой только азотистыми основаниями, для упрощенной записи используют только эти буквы, иногда с приставкой «d» перед буквой (dG, dC и т. п.), чтобы понятно было, что речь идет о ДНК, а не о РНК.

Рис. 2. Формы ДНК (слева направо):  A, B и Z

Рис. 2. Формы ДНК (слева направо): A, B и Z. Рисунок с сайта ru.wikipedia.org

В зависимости от условий среды и нуклеотидного состава молекулы двойная спираль ДНК может принимать ту или иную конформацию — одну из возможных пространственных форм, возникающих при изменении относительной ориентации отдельных частей молекулы в результате вращения атомов или групп атомов вокруг простых связей, изгиба связей и т. п. (рис. 2). B-форма ДНК представляет из себя правозакрученную спираль, а Z-форма — левозакрученную. Левозакрученная спираль с длинными витками может образовываться лишь из цепочек, имеющих формулу d(CG)n, то есть состоящих из регулярно чередующихся цитозин- и гуанинсодержащих нуклеотидов.

В живых клетках подавляющее большинство молекул ДНК находится в B-форме. Потенциально способны переходить в Z-форму участки, содержащие только G и C. Такой переход может стимулироваться повышением содержания ионов в растворе или определенными белками, стабилизирующими Z-форму ДНК. При переходе молекулы из B- в Z-форму двойная спираль ДНК разворачивается, а затем заворачивается в другую сторону, превращаясь из правозакрученной в левозакрученную.

Рис. 3. Модель ДНК-мотора и переход ДНК из В-формы (вверху) в Z-форму (внизу) и обратно

Рис. 3. Модель ДНК-мотора и переход ДНК из В-формы (вверху) в Z-форму (внизу) и обратно. Белые шарики — азотистые основания, цветные шарики — сахарофосфатный остов (то есть те части нуклеотидов, которые прикрепляются друг к другу, образуя цепочку ДНК). Желтым цветом показана центральная часть ДНК, состоящая только из нуклеотидов C и G и способная переходить из B- в Z-форму и обратно. Красным — спираль ДНК, в середине которой имеется способный к вращению желтый участок. Синим — вторая спираль ДНК, зацепленная за красную спираль и придающая жесткость боковым частям конструкции. Зеленый и лиловый кружки — это молекулы-флюорофоры, по флюоресценции которых можно было определить, повернулась ли спираль. Видно, что при B-Z-переходе расстояние между флюорофорами увеличивается. Изображение из статьи Mao et al., 1999. A nanomechanical device based on the B–Z transition of DNA

Идея использовать это вращательное движение для работы наномотора была реализована еще в 1999 году группой ученых из США (см.: Mao et al., 1999. A nanomechanical device based on the B–Z transition of DNA). Полученная тогда конструкция (рис. 3) состояла из двухспирального центрального участка из нуклеотидов C и G, способного менять конформацию, и жестких боковых групп, продолжающих нити центрального участка (они могли вращаться друг относительно друга при изменении конформации центральной частью). На боковых группах мотора закрепили две молекулы флюорофоров, с помощью которых методом FRET определяли, повернулись ли части мотора друг относительно друга (увеличилось ли расстояние между флюорофорами), то есть произошел ли B-Z-переход.

Метод флюоресцентного, или фёрстеровского, резонансного переноса энергии (FRET) основан на том, что эффективность переноса энергии между двумя флюоресцирующими молекулами (флюорофорами) зависит от расстояния между ними: чем больше расстояние, тем меньше энергии переносится. Таким образом, измеряя флюоресценцию, можно определить малейшие изменения расстояния между микрообъектами.

Однако тогда ученые смогли только убедиться, что поворот происходит. Про динамику процесса (сколько оборотов делают части ротора, в какую сторону они вращаются, сколько времени занимает один поворот) метод FRET ничего определенного сказать не мог.

Ответить на эти вопросы помогли бы наблюдения в реальном времени. Но для таких миниатюрных объектов организовать их непросто. Даже при наличии микроскопа с подходящим разрешением, то есть на уровне, когда можно увидеть отдельные молекулярные структуры, бывает нелегко подготовить образец так, чтобы иметь возможность сфокусироваться на изучаемых микрообъектах. Достичь этого можно, закрепив объекты на подложке, но в случае наномоторов важно при этом не помешать их работе.

Японским ученым удалось справиться с этими проблемами. Благодаря фиксации моторов в рамках из ДНК («корпусах»), которые прикреплялись к подложке, моторы уже не диффундировали в растворе, и на них можно было сфокусировать микроскоп. В то же время, рамка не мешала работе мотора, и за его работой получилось пронаблюдать.

Рис. 4. Схема устройства ротора в рамке, а также микрофотографии собранных механизмов, полученные методом высокоскоростной атомной силовой микроскопии

Рис. 4. Схема устройства ротора в рамке, а также микрофотографии собранных механизмов, полученные методом высокоскоростной атомной силовой микроскопии. Ротор (Rotor) состоит из способного менять конформацию фрагмента (на схеме обозначен лиловым) и «флажка» — выступающего участка, вращение которого можно увидеть на микрофотографиях. Контрольная статическая конструкция («статор», Stator) устроена так же, но не имеет участка, способного изменять конформацию. Размер фотографии — 130 × 130 нм. Рисунок из обсуждаемой статьи в Journal of American Chemical Society

Сначала методом ДНК-оригами японские ученые собирали рамки (рис. 4). В каждой рамке они закрепляли способную к вращению конструкцию из ДНК (ротор), а также контрольную невращающуюся конструкцию такой же структуры, но со случайными нуклеотидами на месте цепочки из C и G (ее назвали «статор»). При изменении содержания ионов в растворе контрольная конструкция не должна была вращаться, поскольку в ней просто не было последовательности, способной переходить в Z-форму.

Конструкцию ротора, созданную их американскими коллегами, они немного усовершенствовали: использовали метилированные нуклеотиды, d(5meCG)6, вместо обычных, причем метилированные C и G-нуклеотиды четко чередовались (то есть после каждого C обязательно шел G), что обеспечивало еще большую стабильность Z-формы и облегчало переход ДНК из B-формы в Z-форму. Для «запуска» мотора использовали повышение концентрации ионов Mg2+ (а не Na+, как авторы статьи 1999 года), поскольку ионы Mg2+ улучшают прикрепление рамки из ДНК-оригами к подложке.

Чтобы легче было следить за поворотом ротора, авторы новой работы зацепили за ротор структуру из ДНК — «флажок», — по которому можно было следить за тем, насколько повернулся ротор. В начальном положении, когда концентрация солей в растворе невелика, флажок и на роторе, и на «статоре» (невращающемся контроле) смотрел вниз.

На самом деле, флажок в контроле тоже иногда повернут в другую сторону, просто за счет случайного поворота конструкции вокруг своей оси. Так что единственное отличие флажка на статоре-контроле от флажка на роторе — это то, что положение флажка в контроле не меняется при изменении концентрации ионов Mg2+. Вне зависимости от концентрации ионов Mg2+, 70-75% флажков в контроле повернуты вниз. С ротором же ситуация совсем другая: при концентрации Mg2+ 5 миллимоль/л около 70% всех роторов имеет флажок, повернутый вниз, так же как в контроле, но если постепенно повышать концентрацию Mg2+, то процент флажков, повернутых вверх, будет увеличиваться. При концентрации 25 миллимоль/л Mg2+ всего лишь 30% роторов будет иметь флажки, повернутые вниз и около 70% — флажки, повернутые вверх (обратная ситуация по сравнению с контролем).

Изображения получали методом высокоскоростной атомной силовой микроскопии. Этот метод позволяет получить картинки с разрешением порядка нескольких нанометров. Например, при таком разрешении хорошо виден флажок из ДНК длиной 15 нм и шириной 8 нм (1 нм = 10–9 м); для сравнения, диаметр средней клетки животного или растения имеет порядок 100 мкм (1 мкм = 10–6 м).

«Высокоскоростная» микроскопия в данном случае означает, что один кадр можно было получить за пять секунд. Чтобы осуществлять съемку в таком режиме, авторы подобрали среднюю концентрацию солей Mg2+ (10 миллимоль/л), при которой B-Z-переход происходит, но с небольшой скоростью, подходящей для доступного временного разрешения.

Рис. 5. Изображения, полученные при помощи высокоскоростной атомной силовой микроскопии

Рис. 5. Изображения, полученные при помощи высокоскоростной атомной силовой микроскопии. Контрольная неподвижная конструкция («статор») располагается в нижней части рамки из ДНК, а ротор — в верхней части. Обратите внимание на движение флажков на роторе и на статоре во время съемки. Видно, что статор практически неподвижен, а ротор поворачивается. В промежуточных положениях поворота ротора флажок виден нечетко. Рисунок из обсуждаемой статьи в Journal of American Chemical Society

В результате исследователи получили серию микрофотографий (рис. 5). Из них видно, что в начале съемки флажок на роторе был в положении «вниз», потом начал поворачиваться, достигнув верхнего положения (поворот на 180°) через 30 секунд, затем ротор совершил еще пол-оборота и оказался в положении «вниз» на 40-й секунде съемки. На 85-й секунде ротор уже опять был флажком вверх, а на 120-й — опять флажком вниз. То есть исследователям удалось проследить два поворота ротора, причем первый поворот происходил в два раза быстрее второго (40 и 80 секунд соответственно). Флажок на «статоре» на всём протяжении съемки был повернут вниз.

Это соответствует теоретическому расчету, который предсказывает поворот на 128° на каждую пару нуклеотидов в изменяющей конформацию части. Поскольку в этой конструкции таких пар было 6, то можно было ожидать увидеть 2,1 поворота. Статор при изменении содержания солей оставался практически неподвижным, что также соответствовало ожиданиям исследователей.

Авторам впервые удалось осуществить прямое наблюдение за работой искусственной наномашины и одновременно впервые увидеть B-Z-переход в молекуле ДНК в режиме реального времени. Эта работа также представляет собой хороший пример применения техники ДНК-оригами для получения структуры строго определенной формы — жесткой рамки, подходящей к размеру мотора и помогающей наблюдать за работой отдельных наноустройств. Развитие подобных подходов к визуализации событий молекулярных масштабов позволит сделать наномир немного ближе и понятнее.

Источник: Arivazhagan Rajendran, Masayuki Endo, Kumi Hidaka, and Hiroshi Sugiyama. Direct and Real-Time Observation of Rotary Movement of a DNA Nanomechanical Device // Journal of American Chemical Society. 2013. V. 135 (3). P. 1117–1123.

См. также:
Chengde Mao, Weiqiong Sun, Zhiyong Shen & Nadrian C. Seeman. A nanomechanical device based on the B–Z transition of DNA // Nature. 14 January 1999. V. 397. P. 144–146.

Юлия Кондратенко

Последние новости: Бионанотехнологии, Молекулярная биология, Химия, Юлия Кондратенко

4 августа
Ночь без сна улучшает настроение
28 июля
Механизм фотосинтеза использует вибронную квантовую когерентность
24 июля
Шагающий биомеханизм создан из напечатанных на 3D-принтере элементов и искусственно выращенных скелетных мышц
22 июля
Условный рефлекс у нематоды формируется на основе инсулинового рецептора
20 июня
Раки тоже тревожатся
17 июня
Как белок нетрин подсказывает аксонам, куда им расти
16 апреля
Как фитоплазма превращает арабидопсис в зомби
21 января
Царицы разных видов общественных насекомых используют одни и те же химические сигналы, чтобы запретить рабочим размножаться
12 января
Для успешного размножения мышам достаточно из Y-хромосомы всего двух генов
26 декабря
Дрожжи помнят о неразделенной любви


Астрономические наблюдения недели

Новости науки почтой (рассылка на Subscribe.ru):

 

Новости науки по темам: антропология, археология, астрономическая научная картинка дня, астрономия, биология, биотехнологии, генетика, геология, затмения, информационные технологии, космос, лингвистика, математика, медицина, нанотехнологии, наука в России, наука и общество, Нобелевские премии, палеонтология, Первое апреля, психология, технологии, физика, химия, эволюция, экология, энергетика, этология

Новости науки по авторам: Дарья Баранова, Вера Башмакова, Александр Бердичевский, Максим Борисов, Варвара Веденина, Александр Венедюхин, Михаил Волович, Михаил Гарбузов, Алексей Гиляров, Дмитрий Гиляров, Сергей Глаголев, Николай Горностаев, Юрий Ерин, Анастасия Еськова, Андрей Журавлёв, Дмитрий Замолодчиков, Игорь Иванов, Вячеслав Калинин, Мария Кирсанова, Дмитрий Кирюхин, Александр Козловский, Юлия Кондратенко, Ольга Кочина, Виталий Кушниров, Иван Лаврёнов, Алексей Левин, Андрей Логинов, Сергей Лысенков, Лейла Мамирова, Александр Марков, Мария Медникова, Вадим Мокиевский, Григорий Молев, Максим Нагорных, Елена Наймарк, Петр Петров, Александр Пиперски, Константин Попадьин, Сергей Попов, Роман Ракитов, Татьяна Романовская, Александр Самардак, Александр Сергеев, Андрей Сидоренко, Даниил Смирнов, Дарья Спасская, Любовь Стрельникова, Алексей Тимошенко, Мария Шнырёва, Сергей Ястребов, Светлана Ястребова

Новости науки по месяцам: 2014 VIII, VII, VI, V, IV, III, II, I  2013 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2012 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2011 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2010 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2009 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2008 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2007 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2006 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2005 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I 


Научные новости у наших партнеров: «Биомолекула», «В мире науки», «Вокруг света», Газета.ру, Грани.ру, Лента.ру, «Наука и жизнь», «Популярная механика», Gzt.ru

 


при поддержке фонда Дмитрия Зимина - Династия