Сверхпроводимость отмечает столетний юбилей

Хейке Камерлинг-Оннес (справа) с помощником Герритом Флимом (Gerrit Flim) в своей лейденской лаборатории, ок. 1911. Фото из обсуждаемой статьи в Physics Today
Хейке Камерлинг-Оннес (справа) с помощником Герритом Флимом (Gerrit Flim) в своей лейденской лаборатории, ок. 1911. Фото из обсуждаемой статьи в Physics Today

Великие научные открытия нередко делаются в процессе осуществления вполне традиционных исследовательских проектов. Именно это произошло 8 апреля 1911 года в криогенной лаборатории Лейденского университета, которую семнадцатью годами ранее основал и возглавил профессор экспериментальной физики Хейке Камерлинг-Оннес (Heike Kamerlingh Onnes). Вместе с ассистентами Корнелисом Дорсманом (Cornelis Dorsman) и Гиллесом Хольстом (Gilles Holst) он изучал электрические свойства металлов, охлажденных до температур жидкого гелия. В тот судьбоносный день исследователи обнаружили, что тонкий провод из сверхчистой ртути при охлаждении до 3 градусов Кельвина практически перестает сопротивляться электрическому току.

Камерлинг-Оннес прекрасно знал, что его открытие не поддается объяснению с точки зрения тогдашних физических теорий. Его главный — и очень глубокий — вывод состоял в том, что ртуть перешла в новое состояние, которое он назвал сверхпроводящим. Этот термин впервые появился в записных книжках Камерлинг-Оннеса; потом, в начале 1913 года, в его журнальной статье, а через несколько месяцев и в Нобелевской лекции. С тех пор он занимает почетное место в языке физики.

Было бы смешно подробно повествовать читателям «Элементов» о том, что такое сверхпроводимость и какими великими последствиями обернулось для науки ее открытие. Достаточно отметить, что это было первое физическое явление чисто квантовой природы, обнаруженное при исследовании макроскопического объекта (если не считать замеченного чуть раньше аномального поведения теплоемкости при очень низких температурах, которое, однако, поначалу не вызывало особых подозрений на необычность).

Последующее изучение этого феномена не только обогатило теоретическую и экспериментальную физику твердого тела, но и стимулировало серьезные прорывы в других областях физической науки (например, концепция спонтанного нарушения симметрии, играющего гигантскую роль в теории элементарных частиц, релятивистской астрофизике и космологии, была впервые сформулирована именно в контексте теории сверхпроводимости). Сверхпроводящими магнитами (кстати, первый такой прибор был изготовлен в лаборатории Камерлинг-Оннеса еще в 1913 году) в наши дни оснащено великое множество установок — от приборов для магнитно-резонансной томографии до сверхмощных ускорителей. Если не замедлится прогресс в создании высокотемпературных сверхпроводящих материалов, они займут достойное место и в энергетике.

А вот история великого открытия Камерлинг-Оннеса со товарищи известна куда меньше (справедливости ради нельзя не отметить, что в том эксперименте сопротивление ртутного образца измерял Гиллес Хольст, в будущем основатель и первый директор знаменитой Физической лаборатории фирмы «Филипс» в Эйндховене). Сейчас по случаю юбилея самое время ее вспомнить.

Физика низких температур в то время была еще очень молодой наукой. Можно сказать, что она началась в 1877 году, когда французский инженер Луи Кайете (Louis Paul Cailletet) и швейцарский физик Рауль Пикте (Raoul Pictet) разными способами выполнили ожижение кислорода. Шестью годами позже краковские исследователи Зигмунт Врублевски (Zygmunt Wróblewski) и Кароль Ольшевски (Karol Olszewski) проделали ту же операцию с азотом. Жидкий водород был получен только в 1898 году. Его получил шотландский физик Джеймс Дьюар (James Dewar), изобретатель вакуумного криостата, он же сосуд Дьюара.

Камерлинг-Оннес включился в гонку за движение к абсолютному нулю температур в 1893 году. Используя связи с голландскими промышленниками, он устроил в своем университете лучшую в мире криогенную лабораторию, оснащенную самым современным оборудованием. Там он 10 июля 1908 года первым перевел в жидкое состояние гелий, точнее его основной изотоп гелий-4 (впрочем, о существовании гелия-3 тогда никто не догадывался). Затем в течение двух лет Камерлинг-Оннес и его сотрудники использовали сжиженный гелий для получения всё более низких температур и в конце концов дошли до 1 кельвина (критическая температура гелия-4 равна 5,2 К). Поскольку спуститься еще ниже с  помощью тогдашних технологий не представлялось возможным, Камерлинг-Оннес переключился на исследование свойств различных веществ при сверхнизких температурах. Одним из пунктов его программы было измерение электропроводности металлов.

Эта проблема считалась интересной, но вроде бы не обещала особых неожиданностей. Тогдашние доквантовые теории утверждали, что удельное сопротивление металла пропорционально квадратному корню температуры. Однако низкотемпературные эксперименты этого не подтверждали и вообще не давали ясной картины. Многие физики вслед за великим лордом Кельвином даже полагали, что около абсолютного нуля свободные электроны застывают вблизи атомов и потому уже не могут двигаться под действием электрического поля. Отсюда следовало, что при предельно низких температурах металлы вообще перестают проводить электричество.

Одно время к этой точке зрения склонялся и Камерлинг-Оннес — но только до своей победы над гелием. Позднее он заключил, что вблизи абсолютного нуля амплитуда рассеивания электронов на атомах (точнее, ионах) кристаллической решетки будет падать с температурой настолько быстро, что электрическое сопротивление чистого металла всё же должно стремиться к нулю. Однако Камерлинг-Оннес не сомневался в том, что оно обязано снижаться постепенно, а отнюдь не скачкообразно.

Первые эксперименты вполне подтверждали эту гипотезу. В конце 1910 года Камерлинг-Оннес, Дорсман и Хольст промерили температурную зависимость сопротивления платиновой проволоки при охлаждении жидким гелием. Оказалось, что оно сначала падает вместе с температурой, а ниже 4,25 К делается постоянным. Это остаточное сопротивление Камерлинг-Оннес объяснил тем, что платина была не вполне чистой, так что содержащиеся в ней примеси поддерживали рассеивание электронов и тем самым препятствовали дальнейшему росту электропроводности.

В следующих опытах он решил использовать максимально очищенный металл, каковым в то время была ртуть, которую можно было избавить от примесей посредством двойной перегонки. Для этой серии экспериментов он уже имел более совершенный криостат, который еще предстояло опробовать. Этот прибор как раз и был пущен в работу 8 апреля 1911 года.

А дальше вмешался Его Величество Случай. В тот день экспериментаторы хотели всего лишь проверить, как новый криостат заполняется жидким гелием, и даже не планировали электрических измерений. Однако перед этим в установку на всякий случай поместили газовый термометр и два резистора, один из золота, другой из ртути. Поскольку заполнение криостата прошло без осложнений, экспериментаторы решили действовать по полной программе. Измерив сопротивление обоих металлов при 4,3 К, они начали снижать давление пара внутри криостата. Жидкий гелий стал быстро испаряться, уменьшая свою температуру. Когда она упала примерно до 3 К, сопротивление резисторов измерили вновь. Это произошло в 4 часа дня, через 9 часов после начала эксперимента. Как с удивлением отметил в лабораторном журнале Камерлинг-Оннес, сопротивление ртутного резистора стало практически нулевым. Именно так и была открыта сверхпроводимость.

Страница из записной книжки Хейке Камерлинга-Оннеса, свидетельствующая о первом наблюдении сверхпроводимости. Из коллекции Музея Бургаве (Museum Boerhaave) в Лейдене. Фото из обсуждаемой статьи в Physics Today
Страница из записной книжки Хейке Камерлинга-Оннеса, свидетельствующая о первом наблюдении сверхпроводимости. В рамку взята голландская фраза Kwik nagenoeg nul — «Сопротивление ртути практически нулевое» (3 К). Следующее предложение Herhaald met goud означает «Повторено с золотом». Из коллекции Музея Бургаве (Museum Boerhaave) в Лейдене. Фото из обсуждаемой статьи в Physics Today

Критическая температура перехода ртути в сверхпроводящее состояние в тот день еще не была определена, да такой задачи и не ставилось. Ее выяснили в следующем эксперименте, проведенном 11 мая. Камерлинг-Оннес тогда пришел к выводу, что ртуть делается сверхпроводником при охлаждении до 4,2 К. Точности ради надо отметить, что его группа использовала не вполне адекватную температурную шкалу, и на самом деле чистая ртуть переходит в сверхпроводящее состояние при 4,15 К. Именно это значение сейчас фигурирует в физических справочниках.

А дальше была работа, работа и опять работа. В 1912 году лейденские физики нашли еще два сверхпроводника — свинец и олово. В январе 1914 года они обнаружили, что достаточно сильное магнитное поле разрушает сверхпроводимость. В том же году они выполнили эффектный эксперимент, который показал, что индукционный ток, возбужденный в свинцовом сверхпроводящем кольце, циркулирует на протяжении часов без малейшего затухания. В 1919 году из Лейдена пришла весть, что сверхпроводниками становятся таллий и уран. Но мы уже далеко ушли от 1911 года, пора и остановиться.

В заключение еще один малоизвестный факт. Альберт Эйнштейн никогда специально не занимался сверхпроводимостью, однако оставил о ней любопытное замечание. В 1922 году он отметил, что для ее исследования пока что приходится полагаться только на эксперименты, поскольку «мы еще далеки от понимания квантовой механики сложных систем». Насколько мне известно, это было первое появление термина «квантовая механика» в научной литературе.

Источники:
1) Dirk van Delft, Peter Kes. The discovery of superconductivity // Physics Today. 2010. V. 63. P. 38–43.
2) Per Fridtjof Dahl. Kamerlingh Onnes and the discovery of superconductivity: The Leyden years 1911-1914 // Historical Studies in the Physical Sciences. 1984. V. 15. P 1–38.

См. также:
В. Л. Гинзбург, Е. А. Андрюшин. Сверхпроводимость.

Алексей Левин


7
Показать комментарии (7)
Свернуть комментарии (7)

  • freeresearcher  | 08.04.2011 | 13:50 Ответить
    "В конце 1910 года Камерлинг-Оннес, Дорсман и Холст промерили температурную зависимость сопротивления платиновой проволоки при охлаждении жидким гелием. Оказалось, что оно сначала падает вместе с температурой, а ниже 4,25 К делается постоянным. Это остаточное сопротивление Камерлинг-Оннес объяснил тем, что золото было не вполне чистым" - так золото или платина?
    Ответить
    • Vortex > freeresearcher | 08.04.2011 | 14:12 Ответить
      В оригинальном источнике (Physics Today) речь идёт о платине. Которая кстати всё-таки сверхпроводит :), но при температуре порядка милликельвина https://profiles.google.com/103581806061084862840/posts/WvCreEsS32b
      Ответить
      • alekseylevin > Vortex | 08.04.2011 | 18:29 Ответить
        Совершенно верно, причем этот эффект был впервые обнаружен только в самом конце 20 века. Однако даже если бы Камерлинг-Оннес мог спуститься до милликельвиновых температур (в то время совершенно невыполнимая задача, он не обнаружил бы сверхпроводимость у платиновой проволоки. Электрон-фононное взаимодействие у этого металла очень слабо, что сильно затрудняет рождение куперовских пар. Даже в наше время сверхпроводимость у платины реализована только на образцах, отформованных из мелкозернистого порошка, которые Камерлинг-Оннес не смог бы изготовить.
        Ответить
    • editor > freeresearcher | 08.04.2011 | 17:54 Ответить
      Спасибо, исправили.
      Ответить
  • xank92  | 09.04.2011 | 03:57 Ответить
    Конечно, многие открытие делаются случайно, но далеко не все. Многие целенаправленные опыты дали куда большой информации, чем случайные. Глупо утверждать, какие лучше, какие хуже, главное, что наука не стоит на месте!
    Ответить
    • alekseylevin > xank92 | 09.04.2011 | 04:29 Ответить
      Тут нет предмета для спора. Однако случайные открытия в определенном смысле перспективней, ибо имеют больше шансов вывести на что-то действительно новое. Исторически они случались куда чаще в прошлом, чем в наше время - просто потому, что теоретическая база науки была куда скромнее.
      Ответить
  • Vlad-497  | 25.04.2011 | 21:45 Ответить
    Нейтрино - это не то, о чем Вы думаете! НЕЙТРИНО - всего лишь сгусток свернутого первичного поля, ввиду чего не имеет ни массы, ни заряда, а в определенном сочетании с энергией (фотоны, масса покоя которых тоже ноль) образует само вещество. Таким образом, неверен сам первоначальный подход к теории, не говоря уже о практике. И только уразумев, что НЕЙТРИНО - свернувшийся, при искривлении первичного вакуума, кусок первичного поля. (вспомните шарики в теории РЕШЕТКИ) можно будет решить многие проблемы, если не все. Если хорошо вникнуть в данную теорию "нейтрино - кусок первичного поля" это объяснит наличие, воздействие и взаимодействие других известных сил, силовых полей и ядерных взаимодействий.
    Стабильными частицами являются фотон и нейтрино. Масса фотона равна нулю. Масса нейтрино равна нулю. Фотон имеет свою энергию, а энергия нейтрино равна нулю.
    Нейтрино – это часть (кусок) пространства (первичного поля) перемещающаяся в общем пространстве и обладающая всеми его свойствами, оно способно концентрироваться при получении энергии в мюоны и т.д.
    Фотон – сгусток движущейся энергии, причем движущиеся фотоны создают в пространстве вокруг себя поле, как бы ввинчиваясь в пространство. При этом теряется ничтожно малая часть энергии фотона, что обуславливает его остывание.
    Относительно стабильными являются протоны, нейтроны, электроны – они связаны между собой, образуются за счет энергии и пространства (т.е. фотонов и нейтрино), которые сочетаются друг с другом в различной пропорции. Протоны, нейтроны, электроны являются наиболее их устойчивыми пропорциями сочетаний, и в конечном итоге сами образуют свои комбинации атомов, химических элементов и вещества, обуславливаются их свойства.
    Согласно минимуму энергии и пространства протоны, нейтроны, электроны – это их основная форма совместного существования, хотя последние так же распадаются, результатом чего в конечном итоге является энергия в виде фотонов и куски поля в виде нейтрино.
    Первичный вакуум был однороден по времени и расстоянию во всех направлениях. Затем, вследствие искривления пространства, возник участок с большей ко всему другому пространству энергией, и изменилась структура пространства, что дало первичную энергию и первую точку свернувшегося искривленного пространства (нейтрино). Последнее вызвало цепную реакцию возникновения фотонов и нейтрино по всему вакууму. О количественных пропорциях этих элементов пространства судить не представляется возможным. Но результатом можно считать всю окружающую нас видимую и невидимую вселенную.
    Ответить
Написать комментарий
Элементы

© 2005–2025 «Элементы»