Элементы Элементы большой науки

Поставить закладку

Напишите нам

Карта сайта

Содержание
Энциклопедия
Новости науки
LHC
Картинка дня
Библиотека
Видеотека
Книжный клуб
Задачи
Масштабы: времена
Детские вопросы
Плакаты
Научный календарь
Наука и право
ЖОБ
Наука в Рунете

Поиск

Подпишитесь на «Элементы»



ВКонтакте
в Твиттере
в Фейсбуке
на Youtube
в Instagram



Библиотека

 
С. Петранек
«Как мы будем жить на Марсе». Глава из книги


М. Кронгауз
«Русский язык на грани нервного срыва. 3D». Главы из книги


Б. Штерн
Ближайшие пригодные для жизни экзопланеты: где они, как их можно наблюдать и как их достичь


Р. Фишман
Истории мутантов: гомеозисные гены


С. Мац
Искривленное зеркало


Л. Полищук
Почему вымерли мамонты и гибнут сайгаки: история о вкладах


В. Кузык
Нос на батарейках


Д. Мамонтов
Взглянуть инопланетянам в глаза


А. Бердников
Машинная точность


Р. Фишман
Великий уравнитель







Главная / Новости науки версия для печати

Графен оказался прочнее всех


Рис. 1. Изображения графенных мембран. (A) — массив отверстий диаметром 1,5 и 1 мкм в графене, полученных с помощью сканирующего электронного микроскопа. Область I показывает отверстие, частично накрытое графенной мембраной, область II покрыта полностью и область III разорвана вследствие сильного прогиба пленки. Длина масштабной линейки 3 мкм. (B) — изображение отверстия диаметром 1,5 мкм, сделанное атомно-силовым микроскопом. Сплошная синяя линия показывает профиль мембраны вдоль ее диаметра (обозначенного пунктирной голубой линией). Характерная толщина пленки приблизительно 2,5 нм. (С) — схематический рисунок эксперимента. (D) — изображение разорванной мембраны, сделанное атомно-силовым микроскопом. Рис. из обсуждаемой статьи в Science
Рис. 1. Изображения графенных мембран. (A) — изображение массива отверстий диаметром 1,5 и 1 мкм в графене, полученное с помощью сканирующего электронного микроскопа. Область I показывает отверстие, частично накрытое графенной мембраной, область II покрыта полностью и область III разорвана вследствие сильного прогиба пленки. Длина масштабной линейки 3 мкм. (B) — изображение отверстия диаметром 1,5 мкм, сделанное атомно-силовым микроскопом. Сплошная синяя линия показывает профиль мембраны вдоль ее диаметра (обозначенного пунктирной голубой линией). Характерная толщина пленки приблизительно 2,5 нм. (С) — схематический рисунок эксперимента. (D) — изображение разорванной мембраны, сделанное атомно-силовым микроскопом. Рис. из обсуждаемой статьи в Science

Измерения, сделанные американскими учеными из Колумбийского университета, говорят о том, что графен — самое прочное из известных на сегодняшний день веществ. Правда, полученные данные относятся к «идеальному» графену, в котором очень мало примесей и кристаллическая структура однородна.

Графен продолжает преподносить сюрпризы. С момента его открытия в 2004 году физикам уже удалось достоверно установить, что графен обладает высокой подвижностью зарядов (приблизительно в 100 раз выше, чем у кремния, и в 20 раз выше, чем у арсенида галлия; с прикладной точки зрения это означает возможность создания в будущем более совершенных электронных устройств, таких как транзисторы, например), наименьшим среди всех проводников удельным сопротивлением, а также что графен лучший проводник тепла (его коэффициент теплопроводности приблизительно равен 5000 Вт/м·К).

И вот в одном из последних номеров журнала Science появилась статья Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, в которой исследуются характеристики графена при его деформации. Авторы работы, ученые из Колумбийского университета США, выяснили, что, помимо указанных выше «рекордов», графен еще и самый прочный материал из известных на данный момент веществ.

Что подразумевается под этими словами? Известно, что в области малых по величине продольных деформаций выполняется закон Гука — возникающее удлинение образца Δl под действием внешней силы F пропорционально величине действующей силы, первоначальной длине l и обратно пропорционально площади поперечного сечения S:

     .

Закон Гука можно переписать в более привычной, известной из школьного курса физики, форме:

     ,

где k — коэффициент жесткости, а величину E называют модулем Юнга или модулем упругости первого порядка. Именно модуль Юнга и служит своеобразной численной характеристикой, которая позволяет судить о прочности того или иного материала. Всё очень просто: чем больше модуль Юнга, тем прочнее материал.

Отношение    обозначают обычно через σ — механическое напряжение, а    через ε — относительная деформация. В этих терминах закон Гука можно переписать следующим образом:

    σ = .

Важно заметить, что данное соотношение работает, когда деформация упругая (то есть исчезающая с прекращением действия силы). Сложнее выглядит ситуация, когда прикладываемая сила такова, что деформация перестает быть упругой и закон Гука уже не выполняется. В этом случае можно воспользоваться таким соотношением:

    σ =  + 2.

Здесь D обозначает модуль упругости третьего порядка. Как правило, D является отрицательной величиной.

Приведенная выше формула указывает путь для измерения модуля Юнга. Но как быть с графеном, который представляет собой, по сути, атомарную плоскость графита? Ведь в этом случае измерение величины деформации должно быть невероятно точным, а прикладываемая сила очень малой. Чтобы справиться с этой задачей, исследователи прибегли к помощи атомно-силового микроскопа, предварительно приготовив лист графена размером 5 на 5 мм с массивом «вырезанных» в нём отверстий (рис. 1A). Диаметры отверстий были составляли 1,5 и 1 мкм, а их глубина была равна 500 нм.

Схема эксперимента показана на рис. 1C. Алмазная игла (применялось два вида игл: одна с диаметром наконечника 27,5 нм, другая 16,5 нм) атомно-силового микроскопа оказывает давление на центр графенной мембраны, подвергая, таким образом, ее деформации (рис. 2). Было установлено, что при деформациях, превышающих 100 нм, и при значениях сил 1,8 и 2,9 мкН для маленькой и большой иглы микроскопа соответственно мембрана рвется (рис. 1D).

Рис. 2. Игла атомно-силового микроскопа, деформирующая графенную мембрану. Изображение с сайта www.aip.org
Рис. 2. Игла атомно-силового микроскопа, деформирующая графенную мембрану. Изображение с сайта www.aip.org

Дополнительные исследования с помощью просвечивающего туннельного микроскопа показали, что разрушения алмазной иглы при прогибе графенной пленки не происходит. Также удалось выяснить, что для графена существует область упругих деформаций, когда закон Гука выполняется, а значит, измеряя величину прогиба мембраны Δl, с помощью формулы F = kΔl можно измерить коэффициент жесткости k данного вещества. Но как от коэффициента жесткости перейти к искомому модулю Юнга? Ведь, строго говоря, графен — это двумерная структура, а поэтому связь k и E здесь просто некорректна. Что, например, следует подразумевать под длиной образца l?

Авторы решают этот вопрос так: чтобы получить модуль Юнга E, коэффициент жесткости k, который в их статье обозначается как Е2D (под 2D здесь подразумевается не степень, а верхний индекс размерности), должен быть разделен на расстояние h = 0,335 нм между атомными плоскостями в графите, в котором, как известно, каждая плоскость как раз и представляет собой графен. Проще говоря, связь между E и Е2D осуществляется с помощью формулы:

     .

В эксперименте величина прогиба графенной мембраны изменялась в интервале от 20 до 100 нм. Проведя 67 измерений, ученые построили гистограмму (рис. 3) распределения коэффициента жесткости Е2D и значения модуля Юнга Е.

Рис. 3. Гистограмма измеренных в эксперименте коэффициентов жесткости и соответствующих им модулей Юнга графена. Пунктирная линия — приближение Гаусса полученных данных. Изображение из обсуждаемой статьи в Science
Рис. 3. Гистограмма измеренных в эксперименте коэффициентов жёсткости и соответствующих им модулей Юнга графена. Пунктирная линия — приближение Гаусса полученных данных. Изображение из обсуждаемой статьи в Science

Таким образом, рис. 3 можно назвать основным результатом проведенной работы: измеренный коэффициент жесткости для графена составил Е2D = 340 ± 50 Н/м, что отвечает модулю Юнга Е = 1,0 ± 0,1 ТПа (терапаскаля, 1 Тпа = 1012 Па). Поскольку мы упоминали модуль упругости третьего порядка D (для ситуаций, когда деформация перестает быть упругой), то приведем и его значение для графена: D = –2 ± 0,4 ТПа.

А теперь сравним измеренный модуль Юнга графена с другими веществами. На рис. 4 приведена диаграмма «модуль Юнга — плотность» для некоторых веществ. Красным кружком отмечено положение на этой диаграмме графена (значение плотности указано для графита).

Рис. 4. Диаграмма «модуль Юнга — плотность» для различных веществ. Красным кружком отмечено место графена на диаграмме. Плотность графена указана как для графита. Рис. с сайта www.grantadesign.com
Рис. 4. Диаграмма «модуль Юнга — плотность» для различных веществ. Красным кружком отмечено место графена на диаграмме. Плотность графена указана как для графита. Рис. с сайта www.grantadesign.com

Как видно из диаграммы, прочность графена на порядок и более превосходит прочность всех известных в настоящее время веществ. Однако важно понимать, что полученные данные относятся к «идеальному» графену, в котором очень мало примесей и кристаллическая структура однородна; поэтому авторы работы для «чистоты эксперимента» и разработали во избежание этих проблем столь сложную методику измерений.

Источник: Changgu Lee, Xiaoding Wei, Jeffrey W. Kysar, James Hone. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene // Science. 2008. V. 321. P. 385–388.

Юрий Ерин


Комментарии (12)



Последние новости: ФизикаНанотехнологииЮрий Ерин

22.08
Наконец-то обнаружен аналог излучения Хокинга в холодном квантовом газе
21.08
ICHEP 2016: Тяжелых экзотических частиц по-прежнему не видно
20.08
Тяжелый пентакварк окончательно подтвержден
19.08
ICHEP 2016: Всплеск при 2 ТэВ закрыт
17.08
Спектроскопия мюонного дейтерия обострила проблему с радиусом протона
16.08
Опубликованы первые результаты эксперимента MoEDAL
16.08
Обновление страницы «Загадки Большого адронного коллайдера»
12.08
ПК обогнал суперкомпьютеры в решении задачи трехчастичного рассеяния
11.08
ICHEP 2016: ttH-аномалия пока держится
11.08
ICHEP 2016: намеков на суперсимметрию, за одним исключением, пока не видно

Научная картинка дня


Новости науки по темам: антропология, археология, астрономическая научная картинка дня, астрономия, биология, биотехнологии, генетика, геология, затмения, информационные технологии, космос, лингвистика, математика, медицина, нанотехнологии, наука в России, наука и общество, Нобелевские премии, палеонтология, Первое апреля, психология, технологии, физика, химия, эволюция, экология, энергетика, этология

Новости науки по авторам: Валентин Анаников, Дарья Баранова, Вера Башмакова, Александр Бердичевский, Максим Борисов, Варвара Веденина, Александр Венедюхин, Михаил Волович, Михаил Гарбузов, Алексей Гиляров, Дмитрий Гиляров, Сергей Глаголев, Евгений Гордеев, Николай Горностаев, Владимир Гриньков, Дмитрий Дагаев, Юрий Ерин, Анастасия Еськова, Дмитрий Жарков, Андрей Журавлёв, Дмитрий Замолодчиков, Игорь Иванов, Вячеслав Калинин, Павел Квартальнов, Мария Кирсанова, Дмитрий Кирюхин, Александр Козловский, Юлия Кондратенко, Артем Коржиманов, Ольга Кочина, Аркадий Курамшин, Виталий Кушниров, Иван Лаврёнов, Алексей Левин, Андрей Логинов, Сергей Лысенков, Лейла Мамирова, Александр Марков, Мария Медникова, Вадим Мокиевский, Григорий Молев, Тарас Молотилин, Антон Морковин, Марат Мусин, Максим Нагорных, Елена Наймарк, Алексей Опаев, Петр Петров, Александр Пиперски, Константин Попадьин, Сергей Попов, Роман Ракитов, Татьяна Романовская, Александр Самардак, Александр Сергеев, Андрей Сидоренко, Виктория Скобеева, Даниил Смирнов, Павел Смирнов, Дарья Спасская, Любовь Стрельникова, Алексей Тимошенко, Александр Токарев, Александр Храмов, Мария Шнырёва, Сергей Ястребов, Светлана Ястребова

Новости науки по месяцам: 2016 VIII, VII, VI, V, IV, III, II, I  2015 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2014 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2013 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2012 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2011 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2010 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2009 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2008 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2007 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2006 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2005 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I 

Новости науки почтой (рассылка на Subscribe.ru):

 


Где еще почитать научные новости: «Биомолекула», «Вокруг света», Газета.ру. Наука, «Наука и жизнь», Наука и технологии РФ, «Научная Россия», «Популярная механика», РИА Наука, «Чердак», N+1, Naked Science

 


при поддержке фонда Дмитрия Зимина - Династия