Элементы Элементы большой науки

Поставить закладку

Напишите нам

Карта сайта

Содержание
Энциклопедия
Новости науки
LHC
Картинка дня
Библиотека
Видеотека
Книжный клуб
Задачи
Масштабы: времена
Детские вопросы
Плакаты
Научный календарь
Наука и право
ЖОБ
Наука в Рунете

Поиск

Подпишитесь на «Элементы»



ВКонтакте
в Твиттере
в Фейсбуке
на Youtube
в Instagram



Библиотека

 
Ли Биллингс
«5 000 000 000 лет одиночества». Глава из книги


А. Панчин
«Сумма биотехнологии». Глава из книги


И. Левонтина
«О чем речь». Главы из книги


А. Захаров
Нейрогастрономия


А. Водовозов
С запахом горького миндаля


В. Власюк
50 лет САО


Ч. Уилан
«Голая статистика». Главы из книги


Интервью М. Гельфанда с С. Шлосманом
«Замечательная статья» значит только то, что она содержит замечательный результат


П. Лекутер, Д. Берресон
«Пуговицы Наполеона». Глава из книги


Д. Вибе
Телескопы с жидкими линзами: как это работает







Главная / Новости науки версия для печати

Прослежена эволюционная история одного из человеческих генов


У орангутана ген CDC14Bretro, появившийся около 20 млн лет назад, выполняет свою «исходную», предковую функцию. У немного более близкой к нам гориллы этот ген, как и у нас, занят совсем другими делами. Фото с сайтов www.zoo-berlin.de и www.denverzoo.org
У орангутана (слева) ген CDC14Bretro, появившийся около 20 млн лет назад, выполняет свою «исходную», предковую функцию. У немного более близкой к нам гориллы (справа) этот ген, как и у нас, занят совсем другими делами. Фото с сайтов www.zoo-berlin.de и www.denverzoo.org

В ходе эволюции у приматов появилось много новых генов (в основном в результате удвоения старых), однако о функциях этих генов и о деталях их эволюционной истории известно очень мало. Один из таких генов, CDC14Bretro, появился у общего предка человекообразных обезьян в результате деятельности ретротранспозонов. Позднее, у общего предка гориллы, шимпанзе и человека, ген претерпел быстрые изменения под действием отбора, сменив свою «профессию» и «место работы».

Хорошо известно, что новые гены обычно появляются в результате удвоения (дупликации) старых. Появление в геноме «лишней» копии гена открывает свободу для эволюционного экспериментирования: пока одна из копий продолжает выполнять исходную функцию, вторая может под действием мутаций и отбора приобрести новые свойства и заняться чем-то другим. Дупликация генов, таким образом, является важнейшей предпосылкой для появления новых функций.

С теоретической точки зрения тут всё достаточно хорошо проработано, и конкретных примеров тоже хватает. Правда, в большинстве случаев дело ограничивается тем, что по сходству нуклеотидных последовательностей ученые выявляют семейства генов, произошедшие от общего гена-предка, а затем, анализируя эволюционные деревья, оценивают хронологическую последовательность дупликаций. Проследить во всех деталях эволюционную судьбу отдельного гена от момента его «рождения», а также выяснить, как менялись его функции по мере накопления отличий от гена-предка, удается нечасто.

Статья бельгийских и швейцарских биологов, опубликованная в журнале PLoS Biology, интересна сразу в двух отношениях. Во-первых, ученым удалось подробно реконструировать эволюционную историю гена, появившегося сравнительно недавно и успевшего за это время сменить функцию. Во-вторых, речь идет не о каких-нибудь дрожжах или мушках, а о группе, к которой относимся мы сами, то есть о человекообразных обезьянах. Поэтому у данного примера есть все шансы стать хрестоматийным.

Существует два основных механизма удвоения генов: «обычная» дупликация фрагментов ДНК и ретродупликация. Последнее означает дупликацию в результате деятельности ферментов — обратных транскриптаз. Гены обратных транскриптаз входят в состав мобильных генетических элементов — ретротранспозонов, которых в геноме любого млекопитающего насчитываются тысячи. Ретротранспозоны размножаются так: сначала клетка осуществляет транскрипцию (прямую, а не обратную) ретротранспозона, то есть синтезирует на матрице ДНК молекулу РНК. Затем эта РНК используется для синтеза закодированного в ней белка — обратной транскриптазы. Последняя, в свою очередь, может синтезировать на матрице РНК комплементарный ей фрагмент ДНК и встроить его в хозяйскую хромосому (подробнее см.: Данные сравнительной геномики проливают свет на происхождение ретровирусов).

Время от времени обратные транскриптазы переписывают в ДНК хозяина информацию не только со «своих» молекул РНК, создавая новые копии ретротранспозонов, но и с «хозяйских» РНК, создавая тем самым «лишние» копии хозяйских генов. Отличить такие ретродуплицированные гены от обычных можно по отсутствию в них некодирующих вставок — интронов. Дело в том, что после транскрипции интроны из молекулы РНК вырезаются (см. сплайсинг). В результате получаются «зрелые матричные РНК», которые используются, с одной стороны, клеткой для синтеза белка, с другой — обратными транкриптазами для создания ретрокопий. В зависимости от того, в какой генетический «контекст» попадет ретрокопия, она может оказаться либо работающей (тогда ее называют ретрогеном), либо, чаще, она работать не будет, и тогда ее называют ретропсевдогеном.

В эволюции приматов, в том числе человекообразных, или гоминоидов (к которым относятся гиббоны, орангутаны, гориллы, шимпанзе и люди) ретрогены появлялись довольно часто. Авторы ранее выявили целый ряд таких случаев, и вот теперь один из них они сумели разобрать во всех деталях.

Ген CDC14Bretro появился 18–25 млн лет назад у общих предков гоминоидов в результате ретродупликации. Его «родителем» был ген CDC14B, расположенный на другой хромосоме. Ген CDC14B — очень древний, его первые варианты появились еще у одноклеточных эукариот. Функция этого гена (точнее, кодируемого им белка) состоит в регуляции клеточного деления (митоза), в особенности его завершающих стадий. Ген весьма консервативен (то есть мало меняется в ходе эволюции, что говорит о важности выполняемой им функции). Варианты CDC14B настолько похожи у разных организмов, что если у дрожжей удалить этот жизненно необходимый ген и вместо него вставить человеческий аналог, то дрожжевые клетки совершенно нормально живут и делятся.

Как же сложилась судьба ретрокопии этого гена, которая появилась у высших приматов?

Для начала необходимо уточнить, что исходный ген CDC14B у приматов подвергается альтернативному сплайсингу, то есть из незрелой матричной РНК, считанной с этого гена, может быть «нарезана» не одна, а несколько — в данном случае четыре — разных зрелых матричных РНК (которые используются затем для синтеза четырех различающихся вариантов белка). Подробнее о явлении альтернативного сплайсинга см.: Сравнение геномов человека и мыши помогло обнаружить новый способ регуляции работы генов, «Элементы», 21.04.2007. Предком CDC14Bretro является один из четырех сплайс-вариантов, который исследователи обозначили как CDC14Bpar (от «parent» — «родитель»). Остальные варианты получили названия CDC14B1, CDC14B2 и CDC14B3. Два из этих сплайс-вариантов были известны ранее, два другие обнаружены авторами статьи.

Затем авторы проверили, в каких тканях производятся соответствующие молекулы РНК. Картина получилась весьма любопытная. Оказалось, что все четыре сплайс-варианта исходного гена CDC14B производятся во всех тканях человеческого организма, однако его ретрокопия CDC14Bretro работает (экспрессируется) только в мозге и семенниках. Особенно интересно, что ретроген активно работает во время раннего эмбрионального развития в переднем мозге эмбриона, в той области, из которой впоследствии развивается кора больших полушарий.

Похоже на то, что пока «родительский» ген продолжал заниматься своей старинной работой — регуляцией клеточных делений во всех тканях — его ретрокопия занялась чем-то более специфическим в мозге и в семенниках. Эта смена тканевой локализации, по-видимому, произошла еще до отделения предков гиббонов от общего ствола гоминоидов, то есть вскоре после дупликации, 18–25 млн лет назад. Это подтверждается тем, что у гиббонов, шимпанзе и людей ретроген экспрессируется в одних и тех же тканях — в семенниках и в мозге (горилл и орангутанов пока не проверяли).

Интересные результаты дал также анализ изменений нуклеотидной последовательности ретрогена в ходе эволюции. Сопоставив последовательности гена CDC14Bretro разных гоминоидов с эволюционным древом этой группы (которое на сегодняшний день является вполне точным), авторы реконструировали «ископаемые» варианты этого гена, которые имелись у вымерших предков, а также установили, какие нуклеотидные замены и в каком количестве произошли в каждой отдельной веточке. Как известно, нуклеотидные замены делятся на синонимичные (не ведущие к изменению структуры кодируемого белка) и несинонимичные, или значимые. Первые находятся вне сферы внимания естественного отбора и могут накапливаться свободно. Вторые влияют на фенотип и поэтому либо отсеиваются отбором (если они вредны), либо, наоборот, распространяются в популяции и в конце концов фиксируются (если они полезны). Поэтому по соотношению синонимичных и значимых замен можно судить о том, находился ли данный ген под действием одного из двух вариантов отбора. Если синонимичных замен много, а значимых мало, то ген находился под действием очищающего (стабилизирующего) отбора, который отбраковывал большинство значимых замен. Если доля значимых замен выше обычного, то ген находился под действием положительного (движущего) отбора, который способствовал фиксации полезных изменений.

Так вот, оказалось, что ген CDC14Bretro в ходе эволюции гоминоидов почти всегда находился под действием очищающего отбора, и только однажды он подвергся кратковременному, но сильному действию движущего отбора. Этот период соответствует веточке древа, которая соединяет общего предка орангутанов и африканских человекообразных обезьян (= горилла + шимпанзе + человек) с общим предком последних. Движущий отбор действовал на данный ген только в промежутке между 14-ю и 7 млн лет назад и только в одной эволюционной линии, которая соответствует общим предкам африканских человекообразных обезьян (после отделения от этой линии предков орангутанов и до разделения ее на линии, ведущие к горилле и к предку шимпанзе и человека). За этот период в гене зафиксировалось 12 значимых замен и ни одной синонимичной.

Большинство значимых замен, зафиксировавшихся у предков африканских человекообразных, расположены в концевых участках гена, от которых зависит, в какие части клетки будет доставляться белок. Поэтому авторы решили проверить, в каких частях клетки работают белки, кодируемые четырьмя сплайс-вариантами CDC14B и ретрогеном CDC14Bretro. Оказалось, что два из четырех сплайс-вариантов скапливаются в клеточном ядре, а два другие, в том числе «предковый» вариант CDC14Bpar, локализуются в цитоплазме и прикрепляются к микротрубочкам — особым внутриклеточным структурам, играющим важную роль в клеточном делении.

Белки, кодируемые ретрогеном CDC14Bretro, у гиббона и орангутана ведут себя так же, как их молекулярный предок — сплайс-вариант CDC14Bpar, то есть прикрепляются к микротрубочкам. Однако белки, кодируемые тем же ретрогеном у гориллы, шимпанзе и человека, ведут себя совершенно иначе: они игнорируют микротрубочки и вместо этого прикрепляются к мембранам эндоплазматической сети.

Авторы не поленились изготовить «ископаемые» белки по реконструированным последовательностям генов, которые имелись у (1) общего предка орангутана и африканских человекообразных и (2) общего предка африканских человекообразных. Таким образом, были воссозданы белки, существовавшие до и после периода интенсивного движущего отбора. Эти белки затем внедрили в живые клетки. Оказалось, что первый (более древний) воскрешенный белок липнет к микротрубочкам, как у орангутана и гиббона, а второй — к эндоплазматической сети, как у гориллы, шимпанзе и человека.

Дополнительные эксперименты подтвердили, что основной «смысл» тех двенадцати значимых замен, которые зафиксировались в период действия движущего отбора, состоял именно в том, чтобы изменить внутриклеточную локализацию белка — направить его от микротрубочек к эндоплазматической сети. Кроме того, три из этих замен должны были немного изменить свойства активного центра белка — фосфатазного домена. К сожалению, конкретная биохимическая функция всех этих родственных белков неизвестна, но определенно можно сказать следующее. «Изначальный» вариант белка, кодируемый сплайс-вариантом CDC14Bpar, занимался отрезанием фосфатных групп у какого-то вещества в окрестностях микротрубочек и тем самым управлял клеточным делением. Примерно то же самое поначалу делал и белок, кодируемый вновь образовавшимся ретрогеном CDC14Bretro, но уже не во всех тканях, а только в мозге и семенниках (почему произошло изменение тканевой специфичности, пока не ясно). У гиббонов и орангутанов он продолжает этим заниматься до сих пор.

Затем 14–7 млн лет назад у предков африканских человекообразных обезьян ретроген попал под действие движущего отбора и быстро накопил 12 значимых замен, которые привели к смене внутриклеточной локализации и функции белка. Теперь белок стал присоединяться к мембранам эндоплазматической сети и отрезать фосфатные группы у какого-то другого вещества (об этом свидетельствует изменение активного центра). Скорее всего, всё началось с какой-то одной случайной замены, которая чуть-чуть изменила свойства белка, так что это изменение оказалось полезным и создало «зацепку» для отбора — возникло слабое полезное отклонение в новом «удачном» направлении. После этого отбор быстро оптимизировал структуру гена для выполнения новой функции, закрепив еще 11 мутаций.

Разобранный пример показывает, как в результате дупликации генов и последующей игры случайности (мутаций) и необходимости (отбора) может возникнуть — а может и не возникнуть! — белок с новыми свойствами и функциями.

Источник: Lia Rosso, Ana Claudia Marques, Manuela Weier, Nelle Lambert, Marie-Alexandra Lambot, Pierre Vanderhaeghen, Henrik Kaessmann. Birth and Rapid Subcellular Adaptation of a Hominoid-Specific CDC14 Protein // PLoS Biology. 2008. V. 6. P. e140.

О генетических изменениях, произошедших в ходе эволюции человека и его ближайших предков, см. также:
Будут ли расшифрованы генетические основы разума?, «Элементы», 09.10.2006.

Александр Марков


Комментарии (23)



Последние новости: ГенетикаЭволюцияАнтропологияАлександр Марков

28.06
Подростки лучше учатся на положительном опыте, чем на отрицательном
21.06
Кишечная бактерия влияет на социальное поведение мышей
15.06
Получение генов пектиназ от протеобактерий резко ускорило видообразование палочников
14.06
Полиплоидность предков эукариот — ключ к пониманию происхождения митоза и мейоза
10.06
Удалось выяснить, почему рак может уснуть и проснуться через много лет
8.06
Новые древние остатки людей с острова Флорес говорят о родстве «хоббитов» с эректусами
7.06
Индийская община Бней-Исраэль не может быть одним из десяти потерянных колен
6.06
Промышленный меланизм бабочек получил генетическое объяснение
2.06
Обнаружено фундаментальное сходство между развитием актинии и развитием позвоночных
1.06
Половой отбор сделал сперматозоиды дрозофил самыми длинными в мире

Научная картинка дня


Новости науки по темам: антропология, археология, астрономическая научная картинка дня, астрономия, биология, биотехнологии, генетика, геология, затмения, информационные технологии, космос, лингвистика, математика, медицина, нанотехнологии, наука в России, наука и общество, Нобелевские премии, палеонтология, Первое апреля, психология, технологии, физика, химия, эволюция, экология, энергетика, этология

Новости науки по авторам: Валентин Анаников, Дарья Баранова, Вера Башмакова, Александр Бердичевский, Максим Борисов, Варвара Веденина, Александр Венедюхин, Михаил Волович, Михаил Гарбузов, Алексей Гиляров, Дмитрий Гиляров, Сергей Глаголев, Евгений Гордеев, Николай Горностаев, Владимир Гриньков, Дмитрий Дагаев, Юрий Ерин, Анастасия Еськова, Дмитрий Жарков, Андрей Журавлёв, Дмитрий Замолодчиков, Игорь Иванов, Вячеслав Калинин, Павел Квартальнов, Мария Кирсанова, Дмитрий Кирюхин, Александр Козловский, Юлия Кондратенко, Артем Коржиманов, Ольга Кочина, Виталий Кушниров, Иван Лаврёнов, Алексей Левин, Андрей Логинов, Сергей Лысенков, Лейла Мамирова, Александр Марков, Мария Медникова, Вадим Мокиевский, Григорий Молев, Тарас Молотилин, Марат Мусин, Максим Нагорных, Елена Наймарк, Алексей Опаев, Петр Петров, Александр Пиперски, Константин Попадьин, Сергей Попов, Роман Ракитов, Татьяна Романовская, Александр Самардак, Александр Сергеев, Андрей Сидоренко, Виктория Скобеева, Даниил Смирнов, Дарья Спасская, Любовь Стрельникова, Алексей Тимошенко, Александр Токарев, Мария Шнырёва, Сергей Ястребов, Светлана Ястребова

Новости науки по месяцам: 2016 VI, V, IV, III, II, I  2015 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2014 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2013 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2012 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2011 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2010 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2009 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2008 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2007 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2006 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2005 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I 

Новости науки почтой (рассылка на Subscribe.ru):

 


Где еще почитать научные новости: «Биомолекула», «Вокруг света», Газета.ру. Наука, «Наука и жизнь», Наука и технологии РФ, «Научная Россия», «Популярная механика», РИА Наука, «Чердак», N+1, Naked Science

 


при поддержке фонда Дмитрия Зимина - Династия