Элементы Элементы большой науки

Поставить закладку

Напишите нам

Карта сайта

Содержание
Энциклопедия
Новости науки
LHC
Картинка дня
Библиотека
Видеотека
Книжный клуб
Задачи
Масштабы: времена
Детские вопросы
Плакаты
Научный календарь
Наука и право
ЖОБ
Наука в Рунете

Поиск

Подпишитесь на «Элементы»



ВКонтакте
в Твиттере
в Фейсбуке
на Youtube
в Instagram



Библиотека

 
К. Циммер
«Микрокосм». Глава из книги


Р. Докинз
«Эгоистичный ген». Глава из книги


А. Бердников
Вдоль по лунной дорожке


В. Бабицкая, С. Горбунов
Как и зачем птицы общаются с охотниками за медом


Е. Чернова
Хаос и порядок: фрактальный мир


У. Айзексон
«Инноваторы». Глава из книги


Н. Резник
Жираф большой, ему видней, и сам он хорошо заметен


М. Софер
Куда уходит лето?


С. Петранек
«Как мы будем жить на Марсе». Глава из книги


В. Мацарский
Разгневанный Эйнштейн и «темный» рецензент







Главная / Новости науки версия для печати

Геном актинии оказался почти таким же сложным, как у человека


Геном человека оказался в целом гораздо больше похож на геном актинии (на фото — актиния Nematostella), чем геномы мухи и червя. Фото с сайта genome.jgi-psf.org
Геном человека оказался в целом гораздо больше похож на геном актинии (на фото — актиния Nematostella), чем геномы мухи и червя. Фото с сайта genome.jgi-psf.org

Прочтение генома актинии показало, что важнейшие генетические новации в эволюции многоклеточных животных произошли на самых ранних ее этапах. Последний общий предок актинии, человека и мухи, по-видимому, жил около 700 млн лет назад и уже обладал весьма сложным геномом. Базовая генетическая «программа», руководившая развитием первых животных, оказалась настолько удачной и гибкой, что последующая прогрессивная эволюция животных обеспечивалась в основном изменениями ее «настроек», а не «архитектуры».

Американские ученые сообщили о «черновом» прочтении генома актинии Nematostella, представителя книдарий (Cnidaria), куда относятся также коралловые полипы, гидры и медузы. Выбор этого объекта определялся в первую очередь его «стратегическим» положением у самого основания эволюционного древа животных.

Если не учитывать ряд маленьких недостаточно изученных групп, то самыми примитивными животными можно назвать губок, у которых еще нет настоящих тканей, нервной системы и кишечника. Губки противопоставляются всем прочим животным — так называемым «настоящим многоклеточным животным» (Eumetazoa). Среди этих последних самыми примитивными считаются книдарии. В пределах Eumetazoa книдарии и гребневики («радиально симметричные животные») противопоставляются билатерально-симметричным (Bilateria). К билатериям относятся все прочие животные от жуков и червей до морских звезд и человека.

Генетические исследования последних лет показали, что традиционные представления о примитивности книдарий, скорее всего, сильно преувеличены. В частности, оказалось, что у них, как и у высших животных, есть Hox-гены, которые в ходе индивидуального развития задают полярность зародыша и определяют план строения, в котором явно проступают черты билатеральной симметрии. Это подтвердило старую гипотезу, согласно которой общий предок Eumetazoa был двусторонне-симметричным животным. Для того чтобы составить более полное представление об этом предке, было необходимо прочесть геном представителя книдарий и сравнить его с известными геномами билатерий.

Исследователи прочли пока около 95% генома актинии. Геном состоит из 15 пар хромосом, имеет размер около 450 млн пар оснований (в 100 раз больше, чем у кишечной палочки, и в 6 раз меньше, чем у человека) и содержит примерно 18 000 белок-кодирующих генов, что вполне сопоставимо с другими животными. Мобильные генетические элементы (транспозоны и ретротранспозоны) составляют 25% генома (вдвое меньше, чем у млекопитающих).

Для каждого гена актинии исследователи пытались найти аналоги в геномах билатерий: человека, дрозофилы, круглого червя, рыбы и лягушки. Если аналог (то есть похожий ген) находился, исследователи делали вывод, что соответствующий ген имелся у общего предка Eumetazoa. Таким образом удалось составить довольно полное представление о генном репертуаре этого загадочного предка.

Оказалось, что репертуар этот был весьма широк и включал не менее 7766 генных семейств, сохранившихся и у книдарий, и у билатерий. Человек унаследовал не менее 2/3 своих генов от общего с актинией предка; сама актиния — примерно столько же. Муха и круглый червь унаследовали от общего предка с актинией лишь 50% и 40% генов соответственно.

Выяснилось, что в эволюционных линиях позвоночных и книдарий было потеряно меньше исходных генов и меньше приобретено новых, чем в линии, ведущей к круглым червям и насекомым. Однако нужно иметь в виду, что применяемые методики не позволяли отличить действительную потерю гена от его изменения «до неузнаваемости». Поэтому в целом можно лишь заключить, что в линии позвоночных геном изменился меньше, чем в линии первичноротых, куда относятся муха и червь. Одним из следствий этого является следующий неожиданный факт: геном человека оказался в целом гораздо более похожим на геном актинии, чем геномы мухи и червя. Сходство затрагивает не только набор генов, но и порядок их расположения в хромосомах.

Около 80% генов общего предка Eumetazoa имеют явные аналоги за пределами животного царства — это значит, что они были унаследованы животными от одноклеточных предков (хоанофлагеллят, или воротничковых жгутиконосцев). Получается, что геном на удивление мало изменился при становлении животного царства. Среди оставшихся 20% генов, аналогов которых нет у одноклеточных, имеется большое число ключевых регуляторов развития. Примерно четверть этих новых генов (то есть 5% от общего числа) содержат участки или функциональные блоки (домены), встречающиеся у одноклеточных, но в других комбинациях. Это указывает на один из основных путей создания новых генов: они формируются из старых путем перекомбинирования фрагментов.

Как и следовало ожидать, значительная часть «новых» генов Eumetazoa выполняет функции, непосредственно связанные с теми новшествами, которые появились у животных на организменном уровне. Это прежде всего гены, отвечающие за межклеточные взаимодействия и передачу сигналов, за перемещения клеток, регуляцию их деления и другие процессы, играющие ключевую роль в ходе индивидуального развития животных.

Пожалуй, самый главный вывод, который можно сделать на основе анализа генома актинии, состоит в том, что уже самые первые представители животного царства обладали весьма сложным и совершенным «набором рабочих инструментов», то есть генов, который позволил создать огромное разнообразие сложных многоклеточных организмов, внося лишь небольшие изменения в базовую программу развития.

На интуитивном уровне мы привыкли относиться к царству животных как к чему-то огромному и чуть ли не бесконечно разнообразному. Но в последнее время всё больше появляется фактов, которые показывают, что в действительности животные (Metazoa) представляет собой весьма специфическую, компактную и генетически однородную группу организмов. Прочтенный геном актинии добавляет в эту копилку свои пять копеек.

По-видимому, «генеральная идея», на которой основаны строение и эволюция животных, состоит в том, что благодаря деятельности ряда ключевых генов — регуляторов развития (в том числе Hox–генов) между делящимися клетками складывается сложная система взаимоотношений, клетки обмениваются сигналами, градиенты концентраций регуляторных белков задают симметрию и план строения развивающегося организма, и все эти факторы вместе направляют процесс самоорганизации, самосборки сложного многоклеточного существа из генетически идентичных (то есть изначально одинаково «запрограммированных») клеток.

Необходимо помнить, что геном работает не на уровне организма, а на уровне клетки; по сути дела, он реально «кодирует» лишь биохимию и поведение одной клетки. Базовая генетическая программа, имевшаяся уже у первых животных, оказалась столь удачной и гибкой, что дальнейшая эволюция животного царства — в том числе и прогрессивная эволюция, связанная с усложнением организма, — уже почти не требовала радикальных изменений самой программы. Достаточно было лишь небольших изменений в «настройках» (например, менялись регуляторные участки ДНК, от которых зависит тонкая настройка работы генов-регуляторов).

Наука пока еще не очень далеко продвинулась в понимании процессов самоорганизации, составляющих основное содержание онтогенеза (индивидуального развития) животных. Отсюда и трудности в понимании путей и механизмов эволюции животного мира. О том, как теоретики-эволюционисты пытаются преодолеть эти трудности и в какие дебри их при этом порой заносит, заинтересованный читатель может узнать из обзора «Эпигенетическая теория эволюции» и из дискуссии «Универсальный геном Metazoa» на форуме сайта «Проблемы эволюции».

Источник: Nicholas H. Putnam et al. Sea Anemone Genome Reveals Ancestral Eumetazoan Gene Repertoire and Genomic Organization // Science. 2007. V. 317. P. 86–94.

См. также:
1) М. А. Федонкин. The Origin of Metazoa in the light of the Proterozoic fossil record (о древнейших следах животных в палеонтологической летописи).
2) Новости о геномных исследованиях на «Элементах».

Александр Марков


Комментарии (29)



Последние новости: ГенетикаЭволюцияАлександр Марков

20.09
Третий — не лишний: в большинстве лишайников присутствуют два гриба и водоросль
19.09
Муравьи помогают тлям сохранять разнообразие окраски
15.09
Разработан метод пространственной визуализации транскрипции генов
13.09
Эволюционный эксперимент показал, где и как появляются наиболее приспособленные особи
12.09
У древних четвероногих было долгое детство
6.09
Собачий мозг обрабатывает речевую информацию почти так же, как человеческий
2.08
Гибридизация однодомных и двудомных растений увеличивает разнообразие половых фенотипов
23.07
Млекопитающие с относительно крупным мозгом более уязвимы
11.07
Архаичные гены костных ганоидов разнообразнее, чем у более молодых групп позвоночных
7.07
В бирманском янтаре мелового периода найден вымерший убийца пауков

Научная картинка дня


Новости науки по темам: антропология, археология, астрономическая научная картинка дня, астрономия, биология, биотехнологии, генетика, геология, затмения, информационные технологии, космос, лингвистика, математика, медицина, нанотехнологии, наука в России, наука и общество, Нобелевские премии, палеонтология, Первое апреля, психология, технологии, физика, химия, эволюция, экология, энергетика, этология

Новости науки по авторам: Валентин Анаников, Дарья Баранова, Вера Башмакова, Александр Бердичевский, Максим Борисов, Варвара Веденина, Александр Венедюхин, Михаил Волович, Михаил Гарбузов, Алексей Гиляров, Дмитрий Гиляров, Сергей Глаголев, Евгений Гордеев, Николай Горностаев, Владимир Гриньков, Дмитрий Дагаев, Юрий Ерин, Анастасия Еськова, Дмитрий Жарков, Андрей Журавлёв, Дмитрий Замолодчиков, Игорь Иванов, Вячеслав Калинин, Павел Квартальнов, Мария Кирсанова, Дмитрий Кирюхин, Александр Козловский, Юлия Кондратенко, Артем Коржиманов, Ольга Кочина, Аркадий Курамшин, Виталий Кушниров, Иван Лаврёнов, Алексей Левин, Андрей Логинов, Сергей Лысенков, Лейла Мамирова, Александр Марков, Мария Медникова, Вадим Мокиевский, Григорий Молев, Тарас Молотилин, Антон Морковин, Марат Мусин, Максим Нагорных, Елена Наймарк, Алексей Опаев, Петр Петров, Александр Пиперски, Константин Попадьин, Сергей Попов, Роман Ракитов, Татьяна Романовская, Александр Самардак, Александр Сергеев, Андрей Сидоренко, Виктория Скобеева, Даниил Смирнов, Павел Смирнов, Дарья Спасская, Любовь Стрельникова, Алексей Тимошенко, Александр Токарев, Александр Храмов, Мария Шнырёва, Сергей Ястребов, Светлана Ястребова

Новости науки по месяцам: 2016 IX, VIII, VII, VI, V, IV, III, II, I  2015 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2014 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2013 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2012 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2011 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2010 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2009 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2008 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2007 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2006 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2005 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I 

Новости науки почтой (рассылка на Subscribe.ru):

 


Где еще почитать научные новости: «Биомолекула», «Вокруг света», Газета.ру. Наука, «Наука и жизнь», Наука и технологии РФ, «Научная Россия», «Популярная механика», РИА Наука, «Чердак», N+1, Naked Science

 


при поддержке фонда Дмитрия Зимина - Династия