Элементы Элементы большой науки

Поставить закладку

Напишите нам

Карта сайта

Содержание
Энциклопедия
Новости науки
LHC
Картинка дня
Библиотека
Видеотека
Книжный клуб
Задачи
Масштабы: времена
Детские вопросы
Плакаты
Научный календарь
Наука и право
ЖОБ
Наука в Рунете

Поиск

Подпишитесь на «Элементы»



ВКонтакте
в Твиттере
в Фейсбуке
на Youtube
в Instagram



Библиотека

 
Л. Краусс
«Страх физики». Глава из книги


Интервью с В. Сурдиным
Полет на Луну — это командировка на неделю


А. Акопян
Как ищут тёмную материю


И. Акулич
Идеальный почтовый индекс


А. Бердников
Интерференция в домашних условиях. Плёнки и антиплёнки


Интервью с Л. Марголисом
Леонид Марголис: «Мне всегда было интересно, как клетки разговаривают друг с другом»


А. Иванов
Сибирь и Северная Америка были единым целым более миллиарда лет назад


П. Амнуэль
Одиночество во Вселенной


Р. Фишман
Детективы каменного века


О. Макаров
Животные, которые дарят надежду







Главная / Новости науки версия для печати

От глобального потепления спасет закопаемое топливо


Рецепт «углеродного пирога» от Уоллеса Брокера: кусок съел — кусок закопай глубоко под землю (фото с сайта hilarynelson.com)
Рецепт «углеродного пирога» от Уоллеса Брокера: кусок съел — кусок закопай глубоко под землю (фото с сайта hilarynelson.com)

Задав предельный допустимый уровень концентрации СО2 в атмосфере, мы определяем тем самым размер общего «углеродного пирога», который надо разделить между всеми странами пропорционально численности населения. Можно быстро «съесть» свой кусок (как это и происходит в развитых странах), но можно этот процесс замедлить и даже остановить совсем, если компенсировать «съедаемое» связыванием атмосферного СО2 и выведением его из круговорота. К такому решению проблемы призывает всемирно известный ученый Уоллес Брокер. В недавно опубликованной статье в Science он подчеркивает, что введение ограничений на выбросы углекислого газа (а именно на это направлен Киотский протокол) не остановит рост его концентрации в атмосфере, а только замедлит. Необходимо срочно заняться проблемой крупномасштабного выведения СО2 из атмосферы.

Содержание углекислого газа в атмосфере растет очень быстрыми темпами, вызывая серьезное беспокойство не только среди ученых, но и в широких слоях общества. Ведь параллельно с увеличением концентрации СО2 происходит глобальное потепление, тревожные, но абсолютно достоверные признаки которого — таяние ледников Гренландии и уменьшение толщины льда Северного Ледовитого океана. С начала промышленной революции по настоящий день концентрация СО2 в воздухе возросла на 36% — с 280 ppm (parts per million — частей на миллион) до 380 ppm (иначе говоря, с 0,028% до 0,038%).

Рост содержания углекислого газа в атмосфере с конца 1950-х годов по 2002 год по данным Обсерватории Мауна-Лоа (Mauna Loa Observatory) на Гавайях. Отдельные точки — среднемесячные значения. Хорошо видны ежегодные сезонные колебания, связанные с фотосинтезом наземной растительности Северного полушария (СО2 накапливается в атмосфере за зимний сезон, а летом активно связывается). Четко прослеживается и общая тенденция неуклонного возрастания содержания СО2. Синий цвет — данные Океанографического института Скриппса (Scripps Institution of Oceanography, SIO), красный — Национальной администрации по океанам и атмосфере (National Oceanic and Atmospheric Administration, NOAA). Рис. с сайта www.noaanews.noaa.gov
Рост содержания углекислого газа в атмосфере с конца 1950-х годов по 2002 год по данным Обсерватории Мауна-Лоа (Mauna Loa Observatory) на Гавайях. Отдельные точки — среднемесячные значения. Хорошо видны ежегодные сезонные колебания, связанные с фотосинтезом наземной растительности Северного полушария (СО2 накапливается в атмосфере за зимний сезон, а летом активно связывается). Четко прослеживается и общая тенденция неуклонного возрастания содержания СО2. Синий цвет — данные Океанографического института Скриппса (Scripps Institution of Oceanography, SIO), красный — Национальной администрации по океанам и атмосфере (National Oceanic and Atmospheric Administration, NOAA). Рис. с сайта www.noaanews.noaa.gov

На самом деле содержание углекислого газа не отличалось постоянством и в прошлые эпохи, задолго до влияния человека. Из данных анализа пузырьков воздуха, запечатанных во льду Антарктиды, нам известно, что за последние полмиллиона лет было несколько значительных подъемов и спадов в концентрации атмосферного СО2. Крупные колебания были связаны в основном с изменениями орбиты Земли, с так называемыми циклами Миланковича, но такого высокого значения, как нынешнее, еще не наблюдалось, да и рост был не столь быстрым. Параллели с современностью можно найти только в гораздо более далеком прошлом — в конце палеозоя, 300 миллионов лет назад, когда концентрация углекислого газа возросла (но не столь быстро) в 10 раз и достигла той величины, которую мы ожидаем к моменту, когда на Земле будет сожжено всё ископаемое топливо.

Недавно свой взгляд на проблему возможного контроля над ростом содержания СО2 в атмосфере высказал известный американский океанолог и климатолог Уоллес Брокер (Wallace S. Broecker), чье имя теперь прочно ассоциируется с «петлей» или «конвейером Брокера» (Broecker's Conveyor Belt) — круговоротом океанических течений, приносящим тепло в Северную Атлантику и чутко реагирующим на наступление глобального похолодания или потепления. В небольшой статье, опубликованной в последнем номере Science, Брокер обратил внимание на обстоятельство, вообще-то для ученых давно очевидное, но не очень-то ими афишируемое. Речь идет о том, что сокращение выбросов СО2, образующегося в результате сжигания ископаемого топлива, само по себе не решает проблему взятия под контроль содержания этого газа в атмосфере. Достижение опасного уровня и превышение его просто сдвигаются на несколько более поздние сроки, но вовсе не отменяются. Вместо этого Брокер предлагает новый подход, логика которого очень проста.

Рост содержания СО2 в атмосфере (ppm, левая шкала) и эмиссии углерода, поступающего при сжигании ископаемого топлива (миллионы тонн, правая шкала) с середина XIX века до конца XX века. Рис. с сайта www.mongabay.org
Рост содержания СО2 в атмосфере (ppm, левая шкала) и эмиссии углерода, поступающего при сжигании ископаемого топлива (миллионы тонн, правая шкала) с середина XIX века до конца XX века. Рис. с сайта www.mongabay.org

Сейчас на каждые 4 Гт (Гт = гигатонн = 109 тонн) углерода, сожженного в виде ископаемого топлива, в атмосфере доля СО2 повышается на 1 ppm (0,0001%). Если мы все договоримся о допустимом верхнем пределе содержания СО2 в атмосфере, то тем самым определим размер доступного всему человечеству «углеродного пирога» (подчеркнем, что речь идет не о запасах топлива в недрах земли, а о том количестве углекислого газа, которое поступит в атмосферу). Так, к примеру, если принять, что уровень СО2, характерный для периода до начала промышленной революции (260 ppm), можно превысить в два раза, то верхний предел будет равен 560 ppm. Поскольку современный уровень — это 380 ppm (правда, некоторые авторы всё еще считают, что 360 ppm, но будем следовать цифрам, приведенным Брокером), то размер глобального «углеродного пирога») составит при принятых допущениях: 4 Гт × (560 – 380) = 720 Гт. Если в качестве допустимого верхнего уровня содержания СО2 выбрать значение в 450 ppm, то размер «пирога» будет меньше — всего 280 Гт.

После того, как размер «пирога» установлен, нужно определиться с размерами кусков, которые достанутся разным странам. Самое справедливое — разделить пропорционально численности населения. В этом случае на долю богатых стран в сумме достанется около 20%, что при общем объеме «пирога» в 720 Гт составит 150 Гт углерода. Поскольку богатые страны в настоящее время потребляют в сумме около 6 Гт углерода в год в виде ископаемого топлива, то свою долю «пирога» они потратят очень быстро — за 25 лет. Будучи ограничены столь жесткими требованиями, богатые страны будут стремиться уменьшить эмиссию СО2, а также купить дополнительную часть «пирога» у развивающихся стран, расходующих меньше топлива. Однако меры экономии и расширения возможностей использования других источников энергии не спасут положения, не приведут к установлению контроля за изменениями содержания СО2 в атмосфере.

Гипотетический сценарий использования богатыми странами их куска «углеродного пирога» объемом 150 Гт углерода. По ординате отложено годовое потребление топлива (в Гт углерода в год), по абсциссе — годы вперед, начиная с 2007 года. Со временем объем допустимой эмиссии СО2 при сжигании ископаемого топлива будет быстро уменьшаться (коричневатое поле в нижней левой части диаграммы). Соответственно, чтобы сохранить свой кусок на будущее, необходимо всё большее количество СО2 изымать из атмосферы и выводить из круговорота (зеленое поле в правой части диаграммы). Рис. из обсуждаемой статьи в Science. Photo credit: PHOTOS.COM
Гипотетический сценарий использования богатыми странами их куска «углеродного пирога» объемом 150 Гт углерода. По ординате отложено годовое потребление топлива (в Гт углерода в год), по абсциссе — годы вперед, начиная с 2007 года. Со временем объем допустимой эмиссии СО2 при сжигании ископаемого топлива будет быстро уменьшаться (коричневатое поле в нижней левой части диаграммы). Соответственно, чтобы сохранить свой кусок на будущее, необходимо всё большее количество СО2 изымать из атмосферы и выводить из круговорота (зеленое поле в правой части диаграммы). Рис. из обсуждаемой статьи в Science. Photo credit: PHOTOS.COM

Единственное возможное решение — связывание атмосферного СО2 и вывод его из круговорота (захоронение). Чисто технические аспекты подобного процесса сейчас интенсивно разрабатываются (см. Carbon capture and storage): это и закачка углекислого газа в скважины или на большие глубины океана, и связывание его в процессе химических реакций, например при взаимодействии с гидроксидом натрия (едким натром). Но всё упирается в стоимость соответствующих мероприятий. Если при этом цена энергии, получаемой при сжигании ископаемого топлива, возрастет на 10–30%, то решение считается вполне приемлемым. Если больше, надо искать других путей.

P.S. У читателя может возникнуть вопрос — а нельзя ли использовать биологический механизм связывания углекислого газа атмосферы? Ведь фотосинтез и является тем процессом, в ходе которого потребляется СО2 и вода, а образуется органическое вещество и кислород. Ответ простой — да, можно, но только если образующееся органическое вещество будет выведено из круговорота (например, погребено в очень глубоких траншеях, куда не будет доступа кислорода и где не разовьются грибы и бактерии, разлагающие мертвую органику). Если же образовавшееся органическое вещество останется на поверхности земли, то оно в конце концов отомрет и станет пищей грибам и бактериям. В процессе их дыхания будет потреблен когда-то выделившийся кислород, и выделится строго пропорциональное ему количество углекислого газа.

Источник: Wallace S. Broecker. CO2 Arithmetic // Science. 2007. V. 315. P. 1371.

См. также:
1) Гренландия всё быстрее теряет свой лед, «Элементы», 26.09.2006.
2) 300 миллионов лет назад углекислого газа в атмосфере было гораздо больше, чем сейчас, «Элементы», 12.01.2007.
3) Колебания метана в атмосфере: человек или природа — кто кого, «Элементы», 06.10.2006.
4) Таянье ледников Гренландии может привести к глобальному похолоданию, радио «Свобода», 03.08.2006.

Алексей Гиляров


Комментарии (20)



Последние новости: КлиматЭкологияЭнергетикаАлексей Гиляров

12.07
Антропогенные факторы стали причиной исчезновения двух видов австралийских грызунов
16.06
В Старом и Новом Свете птицы сходно реагируют на глобальное потепление
26.05
Очертания видового ареала определяются экологическими свойствами вида
4.05
Рост концентрации CO2 в атмосфере способствует увеличению растительного покрова
24.02
Борнео — центр эндемизма птиц современной Индонезии
22.01
Дельфины помогают олушам ловить сардин
11.01
Голоценовые биосообщества изменились после расселения человека по Земле
27.11
Глобальная температура в 2015 году с запасом побьет прошлогодний рекорд
26.11
Коммуны миролюбивых пауков погибают быстрее, чем агрессивных
12.09
Перевылов трески привел к увеличению разнообразия рыб

Научная картинка дня


Новости науки по темам: антропология, археология, астрономическая научная картинка дня, астрономия, биология, биотехнологии, генетика, геология, затмения, информационные технологии, космос, лингвистика, математика, медицина, нанотехнологии, наука в России, наука и общество, Нобелевские премии, палеонтология, Первое апреля, психология, технологии, физика, химия, эволюция, экология, энергетика, этология

Новости науки по авторам: Валентин Анаников, Дарья Баранова, Вера Башмакова, Александр Бердичевский, Максим Борисов, Варвара Веденина, Александр Венедюхин, Михаил Волович, Михаил Гарбузов, Алексей Гиляров, Дмитрий Гиляров, Сергей Глаголев, Евгений Гордеев, Николай Горностаев, Владимир Гриньков, Дмитрий Дагаев, Юрий Ерин, Анастасия Еськова, Дмитрий Жарков, Андрей Журавлёв, Дмитрий Замолодчиков, Игорь Иванов, Вячеслав Калинин, Павел Квартальнов, Мария Кирсанова, Дмитрий Кирюхин, Александр Козловский, Юлия Кондратенко, Артем Коржиманов, Ольга Кочина, Аркадий Курамшин, Виталий Кушниров, Иван Лаврёнов, Алексей Левин, Андрей Логинов, Сергей Лысенков, Лейла Мамирова, Александр Марков, Мария Медникова, Вадим Мокиевский, Григорий Молев, Тарас Молотилин, Антон Морковин, Марат Мусин, Максим Нагорных, Елена Наймарк, Алексей Опаев, Петр Петров, Александр Пиперски, Константин Попадьин, Сергей Попов, Роман Ракитов, Татьяна Романовская, Александр Самардак, Александр Сергеев, Андрей Сидоренко, Виктория Скобеева, Даниил Смирнов, Павел Смирнов, Дарья Спасская, Любовь Стрельникова, Алексей Тимошенко, Александр Токарев, Александр Храмов, Мария Шнырёва, Сергей Ястребов, Светлана Ястребова

Новости науки по месяцам: 2016 VII, VI, V, IV, III, II, I  2015 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2014 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2013 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2012 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2011 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2010 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2009 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2008 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2007 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2006 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2005 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I 

Новости науки почтой (рассылка на Subscribe.ru):

 


Где еще почитать научные новости: «Биомолекула», «Вокруг света», Газета.ру. Наука, «Наука и жизнь», Наука и технологии РФ, «Научная Россия», «Популярная механика», РИА Наука, «Чердак», N+1, Naked Science

 


при поддержке фонда Дмитрия Зимина - Династия