Элементы Элементы большой науки

Поставить закладку

Напишите нам

Карта сайта

Содержание
Энциклопедия
Новости науки
LHC
Картинка дня
Библиотека
Видеотека
Книжный клуб
Задачи
Масштабы: времена
Детские вопросы
Плакаты
Научный календарь
Наука и право
ЖОБ
Наука в Рунете

Поиск

Подпишитесь на «Элементы»



ВКонтакте
в Твиттере
в Фейсбуке
на Youtube
в Instagram



Библиотека

 
Т. Дамур
«Мир по Эйнштейну». Глава из книги


Л. Франк
«Мой неповторимый геном». Глава из книги


В. Винниченко
Почему дельфины никогда не спят?



В память о Леониде Вениаминовиче Келдыше (07.04.1931–11.11.2016)


Н. Жизан
«Квантовая случайность». Глава из книги


Интервью с С. Ландо
Сергей Ландо: «Прорывы в математике плохо предсказуемы»


В. Гаврилов
Загадка зарянки


А. Левин
Астрономия темного


В. Мацарский
Бодался Чандра с сэром Артуром


О. Макаров
Секрет разделения







Главная / Новости науки версия для печати

Открыт новый механизм регуляции работы генов у бактерий


Нейлоновая модель фермента РНК-полимеразы, застигнутой в тот момент, когда она уже присоединилась к промотору, расплела двойную спираль ДНК и собирается приступить к прочтению генетической информации. Фото с сайта www.pingrysmartteam.com
Нейлоновая модель фермента РНК-полимеразы, застигнутой в тот момент, когда она уже присоединилась к промотору, расплела двойную спираль ДНК и собирается приступить к прочтению генетической информации. Фото с сайта www.pingrysmartteam.com

Американские биологи расшифровали механизм, при помощи которого кишечная палочка E. coli приостанавливает работу своих генов при недостатке ресурсов и снова включает их, когда условия улучшаются. Ключевую роль в этом механизме играет особая молекула РНК (6S-РНК), один из фрагментов которой по своей структуре похож на промотор — участок гена, к которому должен прикрепляться фермент РНК-полимераза, осуществляющий транскрипцию («прочтение») генетической информации.
6S-РНК прикрепляется к активному центру фермента и не дает ему присоединиться к «настоящему» промотору. Чтобы освободиться, РНК-полимераза должна начать синтезировать копию 6S-РНК, а это возможно только при избытке ресурсов. Данная регуляторная система, основанная на конкуренции между ДНК и РНК за контроль над ферментом РНК-полимеразой, возможно, является одним из отголосков эпохи РНК-мира.

В последние годы одним из самых быстро развивающихся направлений в молекулярной биологии стало исследование разнообразных маленьких молекул РНК, которые, как выяснилось, играют в жизни клетки огромную роль. В результате этих исследований представления о молекулярных основах жизни сильно изменились. Еще лет 10 назад считалось, что в основе жизнедеятельности клетки лежат белки и ДНК, а РНК играет второстепенную роль посредника в процессе реализации записанной в ДНК наследственной информации.

Сегодня стало ясно, что молекулы РНК являются активными участниками множества жизненно важных процессов. Постоянно открываются новые функциональные молекулы РНК и новые «роли», выполняемые этими молекулами в клетке. Эти открытия в целом очень хорошо согласуются с теорией РНК-мира. Действительно, если древнейшие живые организмы умели обходиться вообще без белков и ДНК и все функции в них выполнялись молекулами РНК, то можно ожидать, что и в современных организмах эти многофункциональные молекулы не остались без работы.

В последнем номере журнала Science опубликована статья американских биологов, в которой описан новый крайне любопытный механизм регуляции работы генов при помощи РНК, встречающийся у бактерий. В этом механизме, на наш взгляд, довольно ясно угадывается «след РНК-мира». Главный участник новооткрытой регуляторной системы — особая молекула РНК (6S-РНК). Эта молекула присоединяется к ферменту РНК-полимеразе, отвечающему за считывание генетической информации, и не дает ферменту нормально работать. В результате клетка перестает «считывать» собственные гены и синтезировать белки. Это происходит при недостатке ресурсов, когда бактерии выгодно приостановить жизнедеятельность и подождать «лучших времен».

Известно довольно много регуляторных РНК, способных связываться с белками и влиять на их функции, так что сама по себе такая регуляция не новость. По-настоящему интересным и новым является то, каким образом 6S-РНК соединяется с РНК-полимеразой, и в особенности то, как она от нее потом открепляется.

Прежде всего исследователи реконструировали пространственную структуру молекулы 6S-РНК. Зная последовательность нуклеотидов в молекуле РНК, можно довольно точно предсказать ее трехмерную конфигурацию: какие участки «слипнутся» в двойную спираль, какие останутся одноцепочечными, где образуются петли и т. д.

А — структура 6S-РНК кишечной палочки. B — промотор (участок ДНК, к которому прикрепляется РНК-полимераза). Рис. из цитируемой статьи в Science
А — структура 6S-РНК кишечной палочки. B — промотор (участок ДНК, к которому прикрепляется РНК-полимераза). Рис. из цитируемой статьи в Science

Оказалось, что большая часть молекулы образует двойную спираль (см. рис., А). Посередине молекулы имеется «расплетенный» участок, похожий по своей структуре на промотор (B) — участок ДНК, к которому должна прикрепляться РНК-полимераза и с которого начинается транскрипция.

Ученым удалось экспериментально показать, что РНК-полимераза действительно принимает этот псевдопромотор, расположенный на 6S-РНК, за «настоящий», и прикрепляется к нему своим активным центром. В результате активный центр фермента оказывается «забит», и фермент выводится из строя — правда, не навсегда. Чтобы освободиться от «застрявшей» в его активном центре молекулы 6S-РНК, фермент РНК-полимераза, как выяснилось, должен совершить удивительное действие. Он должен начать синтезировать на матрице 6S-РНК ее копию, то есть вести себя как РНК-зависимая РНК-полимераза — древнейший из ферментов, отвечавший за размножение организмов в РНК-мире (см. Найден самый древний из ферментов, «Элементы», 11.12.2006).

Это происходит, когда в окружающей среде становится достаточно ресурсов и в клетке возрастает концентрация активированных нуклеотидов (нуклеотид-трифосфатов) — тех кирпичиков, из которых собираются молекулы РНК и ДНК. РНК-полимераза начинает осуществлять «транскрипцию» молекулы 6S-РНК с того самого нуклеотида, с которого должна была бы начаться транскрипция, будь на месте 6S-РНК с ее псевдопромотором молекула ДНК с настоящим промотором (на рисунке этот нуклеотид U отмечен Г-образной стрелкой).

Этот странный архаичный процесс продолжается недолго. Когда синтезированный фрагмент РНК достигает длины 20 нуклеотидов (на рисунке копируемый участок РНК обведен рамочкой), этот фрагмент вступает во взаимодействие с собственной матрицей, то есть с молекулой 6S-РНК, и «отрывает» ее от РНК-полимеразы. Освобожденная РНК-полимераза теперь может приступить к своей основной работе — прочтению генов, то есть синтезу РНК на матрице ДНК.

Эту необычную систему регуляции работы генов можно было бы интерпретировать просто как некую «причуду матушки-природы» (сами авторы, надо сказать, вообще воздерживаются от каких-либо эволюционных интерпретаций своего открытия), если бы не опубликованная практически одновременно в журнале PLoS Biology статья, о которой только что рассказали «Элементы».

В этой статье показано, что ферменты транскрипции (ДНК-зависимые РНК-полимеразы) современных организмов происходят от РНК-зависимых РНК-полимераз, возникших, вероятно, еще в эпоху РНК-мира. Получается, что РНК-полимераза кишечной палочки, синтезируя короткую молекулу РНК на РНК-матрице, как бы «вспоминает» свое далекое прошлое. Этот процесс вполне может быть не новообразованием, а наследием эпохи РНК-мира. А вся эта новооткрытая регуляторная система может быть отголоском того периода эволюции жизни, когда организмы, построенные на основе РНК и первых немногочисленных белков, уже начали обзаводиться молекулами ДНК в качестве более надежных хранителей наследственной информации. В этот период между «РНК-генами» и «ДНК-генами» могла существовать конкуренция за фермент РНК-полимеразу. Процессы и связи, развившиеся в результате этой конкуренции, могли впоследствии лечь в основу различных систем регуляции работы генов.

С этой точки зрения выявленное в последние годы чрезвычайно активное участие маленьких молекул РНК в регуляции работы генов выглядит вполне закономерным и ожидаемым.

Источник: Karen M. Wassarman, Ruth M. Saecker. Synthesis-Mediated Release of a Small RNA Inhibitor of RNA Polymerase // Science. 2006. V. 314. P. 1601-1603.

См. также:
1) Найден самый древний из ферментов, «Элементы», 11.12.2006.
2) Сложные РНК-переключатели — новый механизм регуляции генов, «Элементы», 18.10.2006.
3) Происхождение жизни.

Александр Марков


Комментировать



Последние новости: ГенетикаАлександр Марков

05.12
Хищные бактерии помогают иммунной системе справиться с инфекцией
01.12
Иммунный статус макак зависит от социального
28.11
У собак есть эпизодическая память
24.11
Метаморфоз у личинок червя Hydroides elegans запускается бактериями
23.11
Численность и генетическое разнообразие китовых акул измерили по пробам воды
22.11
Фиджийские муравьи сами выращивают для себя жилища
14.11
Ген, работающий в мышцах и костях, у обезьян стал регулировать развитие мозга
09.11
Разнообразие пищевого поведения у нематоды Caenorhabditis elegans поддерживается балансирующим отбором
03.11
Змеи потеряли ноги из-за выключения гена Sonic hedgehog
01.11
Предки современных шимпанзе и бонобо неоднократно скрещивались друг с другом

Научная картинка дня


Новости науки по темам: антропология, археология, астрономическая научная картинка дня, астрономия, биология, биотехнологии, генетика, геология, затмения, информационные технологии, космос, лингвистика, математика, медицина, нанотехнологии, наука в России, наука и общество, Нобелевские премии, палеонтология, Первое апреля, психология, технологии, физика, химия, эволюция, экология, энергетика, этология

Новости науки по авторам: Валентин Анаников, Дарья Баранова, Вера Башмакова, Александр Бердичевский, Максим Борисов, Варвара Веденина, Александр Венедюхин, Михаил Волович, Михаил Гарбузов, Алексей Гиляров, Дмитрий Гиляров, Сергей Глаголев, Евгений Гордеев, Николай Горностаев, Владимир Гриньков, Дмитрий Дагаев, Юрий Ерин, Анастасия Еськова, Дмитрий Жарков, Андрей Журавлёв, Дмитрий Замолодчиков, Игорь Иванов, Вячеслав Калинин, Павел Квартальнов, Мария Кирсанова, Дмитрий Кирюхин, Александр Козловский, Юлия Кондратенко, Артем Коржиманов, Ольга Кочина, Аркадий Курамшин, Виталий Кушниров, Иван Лаврёнов, Алексей Левин, Андрей Логинов, Сергей Лысенков, Лейла Мамирова, Александр Марков, Мария Медникова, Вадим Мокиевский, Григорий Молев, Тарас Молотилин, Антон Морковин, Марат Мусин, Максим Нагорных, Елена Наймарк, Алексей Опаев, Петр Петров, Александр Пиперски, Константин Попадьин, Сергей Попов, Роман Ракитов, Татьяна Романовская, Александр Самардак, Александр Сергеев, Андрей Сидоренко, Виктория Скобеева, Даниил Смирнов, Павел Смирнов, Дарья Спасская, Любовь Стрельникова, Дмитрий Сутормин, Алексей Тимошенко, Александр Токарев, Александр Храмов, Мария Шнырёва, Сергей Ястребов, Светлана Ястребова

Новости науки по месяцам: 2016 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2015 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2014 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2013 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2012 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2011 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2010 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2009 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2008 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2007 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2006 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2005 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I 

Новости науки почтой (рассылка на Subscribe.ru):

 


Где еще почитать научные новости: «Биомолекула», «Вокруг света», Газета.ру. Наука, «Индикатор», «Наука и жизнь», Наука и технологии РФ, «Научная Россия», «Популярная механика», РИА Наука, «Чердак», N+1, Naked Science

 


при поддержке фонда Дмитрия Зимина - Династия