Элементы Элементы большой науки

Поставить закладку

Напишите нам

Карта сайта

Содержание
Энциклопедия
Новости науки
LHC
Картинка дня
Библиотека
Видеотека
Книжный клуб
Задачи
Масштабы: времена
Детские вопросы
Плакаты
Научный календарь
Наука и право
ЖОБ
Наука в Рунете

Поиск

Подпишитесь на «Элементы»



ВКонтакте
в Твиттере
в Фейсбуке
на Youtube
в Instagram



Библиотека

 
С. Петранек
«Как мы будем жить на Марсе». Глава из книги


М. Кронгауз
«Русский язык на грани нервного срыва. 3D». Главы из книги


Б. Штерн
Ближайшие пригодные для жизни экзопланеты: где они, как их можно наблюдать и как их достичь


Р. Фишман
Истории мутантов: гомеозисные гены


С. Мац
Искривленное зеркало


Л. Полищук
Почему вымерли мамонты и гибнут сайгаки: история о вкладах


В. Кузык
Нос на батарейках


Д. Мамонтов
Взглянуть инопланетянам в глаза


А. Бердников
Машинная точность


Р. Фишман
Великий уравнитель







Главная / Новости науки версия для печати

Сложные РНК-переключатели — новый механизм регуляции генов


Трехмерная структура РНК-переключателя, реагирующего на тиаминпирофосфат
Трехмерная структура РНК-переключателя, реагирующего на тиаминпирофосфат

РНК-переключатели — недавно открытые активные участки молекул РНК, регулирующие работу генов. До сих пор считалось, что регуляция при помощи РНК-переключателей проста: переключатель реагирует на определенное вещество и подавляет (реже — активизирует) работу гена. Американские исследователи обнаружили более сложное регуляторное устройство, представляющее собой комплекс из двух РНК-переключателей, реагирующих на разные вещества. Открытие показывает, что возможности древнейшего безбелкового механизма генной регуляции далеко не так ограничены, как считалось ранее.

Первые РНК-переключатели (riboswitches) были обнаружены в 2002 году Рональдом Брейкером и его коллегами из Йельского университета. С тех пор число публикаций, посвященных этому странному и очень древнему механизму генной регуляции, стремительно растет.

Работа гена начинается с транскрипции — создания молекулы информационной РНК на матрице ДНК. Транскрибируется не только та часть ДНК, которая кодирует белок, но и кое-что «лишнее», в том числе участок перед началом кодирующей области. Здесь-то и располагаются РНК-переключатели. Они представляют собой последовательности нуклеотидов, которые сразу после транскрипции сворачиваются в замысловатые трехмерные структуры. Сворачивание осуществляется на основе принципа комплементарности. Например, последовательность –АААГГГАГАГЦЦЦУУУ– может образовать петельку с «ножкой», причем ножка будет состоять из двух склеившихся нитей РНК (три левых А слипнутся с тремя правыми У, три Г — с тремя Ц).

Самое важное, что область, где находятся РНК-переключатели, транскрибируется первой. РНК-переключатели приходят в рабочее состояние — то есть принимают нужную конфигурацию — сразу, как только их транскрибировали, и задолго до того, как закончится транскрипция всего гена. Это позволяет им прервать транскрипцию и тем самым фактически выключить ген.

РНК-переключатель состоит из двух функциональных частей. Первая часть представляет собой весьма избирательный и чувствительный рецептор, который способен связываться с какой-то строго определенной молекулой (например, с аминокислотой глицином или с S-аденозилметионином). Вторая часть устройства — это собственно переключатель. Когда рецептор связывается со «своей» молекулой, переключатель меняет свою пространственную конфигурацию, что и приводит к изменению активности гена. Например, переключатель может образовать «шпильку» — торчащий двухнитевой участок, который блокирует дальнейшую транскрипцию и на котором недоделанная информационная РНК просто-напросто обрывается.

Ключевой молекулой, которая приводит в действие РНК-переключатель, часто является вещество, производимое белком, ген которого этим переключателем регулируется. Например, если продуктом гена является белок, синтезирующий вещество А, то РНК-переключатель этого гена с большой вероятностью будет реагировать именно на вещество А. Таким образом формируется отрицательная обратная связь: когда какого-то продукта становится слишком много, производство белка, синтезирующего этот продукт, приостанавливается.

РНК-переключатели широко распространены во всех трех надцарствах живой природы: у бактерий, архей и эукариот. Наиболее разнообразны они у бактерий. Поскольку открыты они были всего четыре года назад, неудивительно, что почти каждый месяц мы узнаем о них что-то новое. Сначала думали, что все РНК-переключатели снижают активность генов — но вскоре среди них были открыты и активаторы. Думали, что регуляторные контуры с участием РНК-переключателей всегда просты: один ген—один переключатель—одно сигнальное вещество. И вот в последнем номере журнала Science появляется статья американских исследователей во главе с Брейкером, в которой описан новый тип регуляторного РНК-устройства, состоящего из двух разных РНК-переключателей.

Брейкер и его коллеги проводят широкомасштабный поиск комплексных РНК-переключателей в прочтенных геномах бактерий. Они нашли уже несколько типов таких устройств. Одно из них — то, которое им удалось наиболее подробно реконструировать и испытать в экспериментах, — они и описывают в статье.

Двойной РНК-регулятор обнаружен перед началом кодирующей области гена metE бактерии Bacillus clausii. Этот ген кодирует фермент, синтезирующий аминокислоту метионин из гомоцистеина. Метионин затем используется для синтеза S-аденозилметионина (SAM). Помимо гена metE, у бактерии есть еще один ген, кодирующий другой фермент с той же функцией — metH. Фермент metH работает эффективнее, чем metE, но только в том случае, если имеется в достаточном количестве вспомогательное вещество (кофермент) метилкобаламин, который производится из аденозилкобаламина (AdoCbl).

Оказалось, что ген metH, а также ген фермента, превращающего метионин в SAM, регулируются РНК-переключателем, реагирующим на SAM. Смысл понятен: когда в клетке становится много SAM, РНК-переключатели приостанавливают работу генов, участвующих в производстве этого вещества.

Ген metE, как выяснилось, регулируется комплексом из двух РНК-переключателей. Один из них реагирует на SAM, другой — на AdoCbl. Смысл второго переключателя состоит в следующем: если в клетке много AdoCbl, то выгоднее, чтобы производством метионина занимался белок metH, а работу гена metE лучше пока приостановить.

Ученые установили, что комплекс из двух переключателей работает как логический элемент NOR (ИЛИ—НЕ). Иными словами, ген выключается, если оба или хотя бы один из двух переключателей свяжется со своей молекулой.

Открытие показало, что возможности безбелковой РНК-регуляции активности генов далеко не так ограничены, как думали раньше. На основе простых РНК-переключателей могут создаваться более сложные регуляторные устройства, способные учитывать сразу несколько параметров окружающей среды.

Уже первооткрывателям РНК-переключателей сразу стало ясно, что они столкнулись с чем-то чрезвычайно древним. Человек, обладающий некоторой биологической эрудицией и хорошим воображением, может представить себе эту картину в красках: как «считываемый» ген вдруг начинает шевелиться, воспринимать сигналы из окружающей среды, реагировать на них и вмешиваться в работу считывающего устройства: не читай меня больше! Удивительно, как далеки от истины были исходные представления об РНК как о безынициативном посреднике между ДНК и машиной синтеза белка. Многие специалисты полагают, что РНК-переключатели появились еще на заре жизни, в добелковую эпоху, когда существовал «мир РНК». Это подтверждается, в частности, тем, что в работе РНК-переключателей белки не принимают никакого участия. Да и те вещества, на которые они реагируют (S-аденозилметионин, аденозилкобаламин и другие), похоже, пришли к нам прямиком из мира РНК, ведь это не что иное, как модифицированные рибонуклеотиды.

Источник: Narasimhan Sudarsan, Ming C. Hammond, Kirsten F. Block, Rudiger Welz, Jeffrey E. Barrick, Adam Roth, Ronald R. Breaker. Tandem Riboswitch Architectures Exhibit Complex Gene Control Functions // Science. 2006. V. 314. P. 300-304.

См. также:
РНК-переключатели: новый механизм генной регуляции у бактерий (Riboswitch: A new mechanism of gene regulation in bacteria. 2004. Pdf, 25 Кб)

Александр Марков


Комментарии (1)



Последние новости: ГенетикаАлександр Марков

2.08
Гибридизация однодомных и двудомных растений увеличивает разнообразие половых фенотипов
11.07
Архаичные гены костных ганоидов разнообразнее, чем у более молодых групп позвоночных
5.07
Биоразнообразие стимулирует собственный рост
28.06
Подростки лучше учатся на положительном опыте, чем на отрицательном
21.06
Кишечная бактерия влияет на социальное поведение мышей
15.06
Получение генов пектиназ от протеобактерий резко ускорило видообразование палочников
14.06
Полиплоидность предков эукариот — ключ к пониманию происхождения митоза и мейоза
10.06
Удалось выяснить, почему рак может уснуть и проснуться через много лет
7.06
Индийская община Бней-Исраэль не может быть одним из десяти потерянных колен
6.06
Промышленный меланизм бабочек получил генетическое объяснение

Научная картинка дня


Новости науки по темам: антропология, археология, астрономическая научная картинка дня, астрономия, биология, биотехнологии, генетика, геология, затмения, информационные технологии, космос, лингвистика, математика, медицина, нанотехнологии, наука в России, наука и общество, Нобелевские премии, палеонтология, Первое апреля, психология, технологии, физика, химия, эволюция, экология, энергетика, этология

Новости науки по авторам: Валентин Анаников, Дарья Баранова, Вера Башмакова, Александр Бердичевский, Максим Борисов, Варвара Веденина, Александр Венедюхин, Михаил Волович, Михаил Гарбузов, Алексей Гиляров, Дмитрий Гиляров, Сергей Глаголев, Евгений Гордеев, Николай Горностаев, Владимир Гриньков, Дмитрий Дагаев, Юрий Ерин, Анастасия Еськова, Дмитрий Жарков, Андрей Журавлёв, Дмитрий Замолодчиков, Игорь Иванов, Вячеслав Калинин, Павел Квартальнов, Мария Кирсанова, Дмитрий Кирюхин, Александр Козловский, Юлия Кондратенко, Артем Коржиманов, Ольга Кочина, Аркадий Курамшин, Виталий Кушниров, Иван Лаврёнов, Алексей Левин, Андрей Логинов, Сергей Лысенков, Лейла Мамирова, Александр Марков, Мария Медникова, Вадим Мокиевский, Григорий Молев, Тарас Молотилин, Антон Морковин, Марат Мусин, Максим Нагорных, Елена Наймарк, Алексей Опаев, Петр Петров, Александр Пиперски, Константин Попадьин, Сергей Попов, Роман Ракитов, Татьяна Романовская, Александр Самардак, Александр Сергеев, Андрей Сидоренко, Виктория Скобеева, Даниил Смирнов, Павел Смирнов, Дарья Спасская, Любовь Стрельникова, Алексей Тимошенко, Александр Токарев, Александр Храмов, Мария Шнырёва, Сергей Ястребов, Светлана Ястребова

Новости науки по месяцам: 2016 VIII, VII, VI, V, IV, III, II, I  2015 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2014 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2013 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2012 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2011 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2010 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2009 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2008 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2007 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2006 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2005 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I 

Новости науки почтой (рассылка на Subscribe.ru):

 


Где еще почитать научные новости: «Биомолекула», «Вокруг света», Газета.ру. Наука, «Наука и жизнь», Наука и технологии РФ, «Научная Россия», «Популярная механика», РИА Наука, «Чердак», N+1, Naked Science

 


при поддержке фонда Дмитрия Зимина - Династия