Владимир Протасов
«Квантик» №3, 2021
Но когда оказалось, что он ровно ничего не знает ни о теории Коперника, ни о строении солнечной системы, я просто опешил от изумления.
Артур Конан Дойл, «Этюд в багровых тонах»
Больше двух тысячелетий назад, в Древней Греции, астроном Аристарх Самосский пришёл к выводу, что Земля вращается вокруг Солнца. Постойте, постойте! Это же сделал Николай Коперник! И не два тысячелетия, а «всего» 500 лет назад. Это ведь он доказал, что все планеты вращаются вокруг Солнца. Или нет? Да, конечно, Коперник. Он установил это, опираясь на множество расчётов и наблюдений, на которые потратил 40 лет. Но первая гелиоцентрическая модель Солнечной системы была построена не им, а Аристархом, на 1800 лет раньше! Коперник знал о ней и строго подтвердил и обосновал эту модель.
Аристарху удалось невероятное — пользуясь элементарной геометрией, лишь наблюдая за небом, он придумал способ вычислить размеры Луны и Солнца и расстояния до них. И написал об этом книгу «О величинах и расстояниях Солнца и Луны». А разве так можно? Ведь Луна и Солнце очень далеко. Как узнать их размеры без современных приборов, без применения законов физики? Оказывается, можно, причём совсем простым рассуждением, доступным школьнику. Сейчас мы сами это проделаем. Найдём размеры Солнца и Луны, а потом вместе с Аристархом придём к выводу о том, что именно Земля должна вращаться вокруг Солнца, а не наоборот. Но Аристарху тогда никто не поверил. Почему? В этом мы тоже разберёмся. Но прежде чем измерять другие планеты и звёзды, надо измерить Землю.
То, что Земля — это шар, люди знали давно. Древние мореплаватели наблюдали, как в течение путешествия меняется картина звёздного неба: становятся видны новые созвездия, а другие, напротив, заходят за горизонт. Если смотреть с берега на уплывающий вдаль корабль, то кажется, что он «уходит под воду» на линии горизонта. Сначала «тонет» сам корабль, а последней скрывается из вида верхушка его мачты1.
Кто первый высказал идею о шарообразности Земли, неизвестно. Возможно — Пифагор и его ученики, считавшие шар совершеннейшей из фигур. Полтора века спустя Аристотель приводит несколько доказательств шарообразности Земли. Главное из них: во время лунного затмения на поверхности Луны отчётливо видна тень от Земли, и эта тень круглая!
Если Земля — шар, то чему равен её радиус? Многие учёные пытались его измерить, но получалось неточно. Во времена Аристотеля радиус нашли с ошибкой в полтора раза. Считается, что первым, кому удалось сделать это с высокой точностью, был греческий математик Эратосфен Киренский (276–194 г. до н. э.). Все о нём знают благодаря решету Эратосфена — способу находить простые числа (числа, имеющие ровно два натуральных делителя — единицу и само себя). Если написать подряд все целые числа, начиная с двойки: 2, 3, 4, 5, ..., вычеркнуть из этого ряда все чётные числа, кроме первого (самого числа 2), затем все числа, кратные трём, кроме числа 3, и т.д., то в результате останутся в точности все простые числа (рис. 1).
Эратосфен был крупнейшим учёным-энциклопедистом, занимался не только математикой, но и географией, картографией и астрономией. Он долгое время возглавлял Александрийскую библиотеку в Египте — главный научный центр того времени. Работая над составлением первого атласа Земли (конечно, не всей Земли, а известной к тому времени её части), он задумал провести точное измерение земного шара. Ведь чтобы составить карту, надо знать расстояния!
Идея была такова. К югу от Александрии, в городе Сиена (современный Асуан) один день в году, ровно в полдень, Солнце достигает зенита — высшей точки на небе. Исчезает тень от вертикального шеста, на несколько минут освещается дно колодца. Происходит это в день летнего солнцестояния, 22 июня — день наивысшего положения Солнца на небе. Эратосфен направляет своих помощников2 в Сиену, и те устанавливают, что ровно в полдень (по солнечным часам) Солнце находится точно в зените. Одновременно (как написано в первоисточнике: «в тот же час») Эратосфен измеряет длину тени от вертикального шеста в Александрии. Получился треугольник, который на схематичном рисунке 2, а мы обозначили КАВ и перерисовали крупнее на рисунке 2, б. В Сиене солнечный луч перпендикулярен поверхности Земли, значит, если его продолжить, пройдёт через центр Земли. Параллельный ему луч в Александрии составляет угол с вертикалью, который мы обозначим буквой α. Такой же угол образуют радиусы Земли ZA и ZS, идущие из центра Земли в Александрию и Сиену. Семиклассники знают, почему — потому что накрест лежащие углы при параллельных прямых равны. А младшие пусть поверят нам на слово.
Рис. 2, а и 2, б
Рис. 2, в
Теперь нарисуем круг радиусом 1 с центром на конце шеста — в точке K (рис. 2, в). Измерим длину дуги внутри угла α, обозначим её буквой d. На рисунке она выделена красным, а круговой сектор (то есть «долька» круга) — синим. Ему соответствует гигантский круговой сектор между радиусами Земли ZA и ZS, и он подобен синей «дольке», потому что имеет тот же угол α. Значит, дуга AS во столько раз больше дуги d, во сколько раз радиус Земли R = ZA больше радиуса маленького круга, равного 1. Итак, AS : d = R : 1. Длину d мы знаем (измерили). Как найти длину дуги AS? Это длина пути из Александрии в Сиену, около 800 км. Её Эратосфен аккуратно вычисляет, исходя из среднего времени движения верблюжьих караванов между двумя городами, а также используя данные бематистов — людей особой профессии, измерявших расстояния шагами. Поделив 800 км на длину дуги d, находим радиус Земли — примерно 6400 км. А длина окружности Земли равна 2πR = 40 000 км. Удивительно, что получилось столь круглое число! Разгадка проста: сама единица длины в 1 метр и была введена (во Франции в конце XVIII века), как одна сорокамиллионная часть окружности Земли (по определению!).
Эратосфен, конечно, использовал другую единицу измерения — стадий (около 200 м). Стадиев было несколько: египетский, греческий, вавилонский, и каким из них пользовался Эратосфен — неизвестно. Поэтому трудно судить наверняка о точности его измерения. Кроме того, неизбежная ошибка возникала в силу географического положения двух городов. Если города находятся на одном меридиане, то полдень в них наступает одновременно. Поэтому, сделав измерения во время наивысшего положения Солнца в каждом городе, мы получим правильный результат. Но на самом деле Александрия и Сиена — не на одном меридиане. Мы можем легко в этом убедиться, взглянув на карту, но у Эратосфена карты не было (ведь он как раз и составлял первую карту). Поэтому его метод (абсолютно верный!), скорее всего, дал неточный результат. Тем не менее, многие исследователи уверены, что точность измерения Эратосфена была высока и что он ошибался менее чем на 2%. Более точное значение было получено только через 2 тысячи лет, в середине XIX века. Над этим трудилась группа учёных во Франции и экспедиция В. Я. Струве в России. Даже в эпоху великих географических открытий, в XVI веке, люди не смогли достичь результата Эратосфена и пользовались неверным значением длины земной окружности. Ни Колумб, ни Магеллан не знали, каковы истинные размеры Земли и какие расстояния им придётся преодолевать. Они-то считали, что длина экватора гораздо меньше, чем на самом деле. Знали бы — может и не поплыли бы.
В чём причина высокой точности метода Эратосфена? До него измерения были локальными, на расстояниях, обозримых человеческим глазом, то есть не более 100 км. При этом неизбежны ошибки из-за рельефа местности, атмосферных явлений и т.д. Для большей точности нужно проводить измерения на очень больших расстояниях. Восьмисот километров между Александрией и Сиеной оказалось достаточно.
Опыт Эратосфена можно проделать и в наших широтах, где Солнце не бывает в зените. Правда, для этого нужны две точки обязательно на одном меридиане. Если же повторить опыт Эратосфена для Александрии и Сиены, сделав измерения в этих городах одновременно (сейчас это легко, можно послать SMS), мы получим верный ответ. И будет неважно, находятся ли города на одном меридиане (почему?).
Оказывается, измерить «подручными средствами» Луну и Солнце даже проще, чем Землю. Для этого не нужно уходить за 800 км, а можно всё сделать, не сходя с места. Мы повторим рассуждения Аристарха, попутно чуть поправив и упростив их.
Наши измерения будут состоять из трёх простых шагов. Сначала понаблюдаем за Луной.
Шаг 1. Во сколько раз Солнце дальше, чем Луна?
Почему иногда видна полная Луна, а иногда месяц? Потому что Луна светит отражённым солнечным светом. Если взять шар и посветить на него с одной стороны, то в любом положении освещённой окажется ровно половина шара. Так же и Солнце всегда освещает ровно половину поверхности Луны. Видимая форма Луны зависит от того, как повёрнута к нам эта освещённая половина. В новолуние, когда Луна вовсе не видна на небе, Солнце освещает её обратную сторону. Затем освещённая половина постепенно поворачивается в сторону Земли. Мы начинаем видеть тонкий серп, затем — месяц («растущая Луна»), далее — полукруг (эта фаза Луны называется «квадратурой»). Затем день ото дня (вернее, ночь от ночи) полукруг дорастает до полной Луны. Потом начинается обратный процесс: освещённая полусфера от нас отворачивается. Луна «стареет», постепенно превращаясь в месяц, повёрнутый к нам левой стороной, подобно букве «C», и, наконец, в ночь новолуния исчезает. Период от одного новолуния до другого длится примерно четыре недели. За это время Луна совершает полный оборот вокруг Земли. От новолуния до половины Луны проходит четверть периода, отсюда и название «квадратура».
Замечательная догадка Аристарха была в том, что, когда Луна в квадратуре, солнечные лучи, освещающие половину Луны, перпендикулярны прямой, соединяющей Луну с Землёй, то есть треугольник ZLS, соединяющий Землю, Луну и Солнце, — прямоугольный (рис. 3). Для простоты мы считаем, что наблюдатель находится в центре Земли. Это несильно повлияет на результат, так как расстояние от Земли до Луны и до Солнца значительно больше размеров Земли.
Рис. 3. Луна в квадратуре (схема)
Измерим угол β между лучами ZL и ZS во время квадратуры. Для этого надо одновременно видеть на небе Солнце и Луну: такое возможно, например, ранним утром. Затем нарисуем на большом листе другой прямоугольный треугольник с тем же углом β. Эти треугольники подобны. Измерив линейкой треугольник на листе, мы узнаем, что его гипотенуза в 400 раз больше катета. Значит, и в гигантском треугольнике ZLS гипотенуза ZS во столько же раз больше катета ZL. Таким образом, ZS = 400 ZL, значит Солнце в 400 раз дальше от Земли, чем Луна.
Аристарх получил отношение 20, а не 400, в первую очередь из-за того, что точно установить момент наступления квадратуры по внешнему виду Луны крайне трудно. И всё же наблюдение Аристарха впечатляет. Если бы, как тогда многие считали, Солнце и Луна были примерно на одном расстоянии от Земли, то в момент, когда Луна освещена наполовину, они находились бы недалеко друг от друга на небе, что совсем не так. Убедитесь в этом сами, посмотрев во время квадратуры днём на небо: положение Луны относительно Солнца позволит вам хоть немного лучше ощутить эти огромные масштабы.
Художник Мария Усеинова
Окончание следует.
1 Конечно, для этого надо обладать очень острым зрением и делать наблюдения в благоприятных условиях. Но в наше время, с помощью оптики с большим увеличением, это сделать легко. Видео «проседающего» на горизонте корабля есть в Интернете.
2 По легенде, одним из них был Архимед, друживший с Эратосфеном.
Рис. 1