Элементы Элементы большой науки

Поставить закладку

Напишите нам

Карта сайта

Содержание
Энциклопедия
Новости науки
LHC
Картинка дня
Библиотека
Видеотека
Книжный клуб
Задачи
Масштабы: времена
Детские вопросы
Плакаты
Научный календарь
Наука и право
ЖОБ
Наука в Рунете

Поиск

Подпишитесь на «Элементы»



ВКонтакте
в Твиттере
в Фейсбуке
на Youtube
в Instagram



Библиотека

 
Р. Найт
«Смотри, что у тебя внутри». Глава из книги


К. Циммер
«Микрокосм». Глава из книги


Н. Резник
Как черепахи нарыли себе панцирь


Интервью с Б. Янишем
Наследники Поппера


А. Гуков
Крупные животные Арктики: сколько их осталось?


А. Огнёв
Откуда жизнь? Еще теплее!


Р. Докинз
«Эгоистичный ген». Глава из книги


А. Бердников
Вдоль по лунной дорожке


В. Бабицкая, С. Горбунов
Как и зачем птицы общаются с охотниками за медом


Е. Чернова
Хаос и порядок: фрактальный мир







Главная / Новости науки версия для печати

Под действием бактерицидных антибиотиков бактерии убивают себя сами


Общий механизм действия бактерицидных антибиотиков

Рис. 1. Общий механизм действия бактерицидных антибиотиков. Действие трех разных видов бактерицидных антибиотиков — аминогликозидов, β‑лактамов и фторхинолонов на соответствующие мишени в клетке приводит к повышенному уровню окисления NADH в дыхательной цепи. При гиперактивации дыхательной цепи образуются активные формы кислорода, например, супероксид, повреждающие железосодержащие белки. Высвобождение иона железа приводит к каталитическому образованию гидроксил-радикалов, повреждающих все основные структуры клетки — липиды, ДНК и белки. Изображение из обзора Kohanski et al. в Nat Rev Microbiol

Стал известен общий механизм, лежащий в основе бактерицидного действия большинства применяемых в настоящее время антибиотиков. Стимулируемое антибиотиками образование свободных радикалов приводит к накоплению критического количества поврежденных гуаниновых оснований в составе ДНК и РНК; попытка клетки исправить причиненный урон приводит к гибели.

Вот уже больше 50 лет человечество применяет антибиотики, благодаря чему практически избавлено от былой опасности бактериальных инфекций. Антибактериальные препараты делятся на два класса: бактерицидные, которые активно убивают бактерий с почти 100% эффективностью, и бактериостатические, которые просто останавливают рост культур.

К бактерицидным антибиотикам относятся β‑лактамы (пенициллин, амоксициллин и др.), блокирующие синтез пептидогликана — основного компонента бактериальной клеточной стенки; фторхинолоны (ципрофлоксацин), блокирующие бактериальную топоизомеразу II в процессе работы и тем самым вызывающие невосстановимые двухцепочечные разрывы в ДНК; аминогликозиды (канамицин), связывающиеся с 30S субъединицей бактериальной рибосомы и ингибирующие трансляцию.

Большинство других ингибиторов трансляции (хлорамфеникол, спектиномицин, тетрациклин и др.) оказывает бактериостатическое действие.

Большинство антибиотиков делают одно их трех: либо нарушают трансляцию белка, либо ингибируют процессы синтеза и поддержания структуры клеточной стенки, либо нарушают репликацию и репарацию ДНК. Благодаря отличиям физиологических процессов и структуры конкретных белков у прокариот и у эукариот антибиотики являются сравнительно нетоксичными для человека. Взаимодействия антибиотиков и их мишеней в деталях изучены, и положение молекулы лекарства в активном центре фермента известно вплоть до отдельного атома. Казалось бы, что осталось непонятного? Тем не менее, за годы изучения и применения антибиотиков накопилось множество разных фактов, свидетельствующих о том, что мы примитивно представляем себе процесс гибели клетки. Например, оказалось, что бактерицидное действие фторхинолонов требует активного синтеза АТФ и наличия синтеза белка. Мутации в системе SOS-ответа (ответа на повреждения ДНК) повышают бактериальную чувствительность к фторхинолонам, и, что уж совсем странно, к пенициллинам. Наконец, оставалось непонятным, почему одни ингибиторы трансляции (аминогликозиды) приводят к быстрой смерти бактерий, в то время как другие (хлорамфеникол, спектиномицин) просто останавливают рост клеток.

В 2007 году ученые из Бостона под руководством Джеймса Коллинза (James Collins) поставили перед собой амбициозную задачу выяснить, как, собственно, ингибирование клеточных ферментов приводит к гибели клеток. Для этого изучалось изменение транскрипции всех генов Escherichia coli в ответ на действие антибиотиков. Неожиданно для всех оказалось, что действие всех трех классов бактерицидных антибиотиков (фторхинолоны, аминогликозиды, β‑лактамы) приводит к активации одних и тех же групп генов: ответственных за метаболизм железа, борьбу с окислительным стрессом и репарацию ДНК. Исследователи предположили, что повреждение железо-серных кластеров в составе ферментов дыхательной цепи и высвобождение свободных ионов железа провоцирует радикальную реакцию с участием пероксида водорода, в ходе которой лавинообразно увеличивается количество гидроксил-радикалов OH·, повреждающих ДНК, белки и мембраны клетки.

Железо-серные кластеры — это комплексы связанных дисульфидными связями атомов железа, которые содержатся в активных центрах многих ферментов, осуществляющих окислительно-восстановительные реакции в клетке, например, аконитазы, NADH-дегидрогеназы, нитроредуктазы.

В Фентоновской реакции, описывающей взаимодействие ионов железа и пероксида водорода, суммарная степень окисления железа не меняется, таким образом, оно является катализатором образования свободных радикалов:

Fe2+ + H2O2 → Fe3+ + ·OH + OH

Fe3+ + H2O2 → Fe2+ + ·OOH + H+

Перекись водорода, участвующая в реакции, постоянно образуется в клетке в процессе аэробного дыхания.

Действительно, применение веществ — захватчиков радикалов, таких как тиомочевина, позволило значительно снизить гибель клеток под действием антибиотиков; аналогичные результаты были достигнуты, когда с помощью мутаций была нарушена способность клеток синтезировать потенциально опасные железо-серные кластеры. Дальнейшие исследования показали, что дестабилизация железо-серных белков в свою очередь вызывается супероксид-анионом O2, который выделяется в ходе гиперактивации дыхательной цепи. По-видимому, попытки клетки компенсировать первичное действие антибиотиков приводят к резко увеличенной выработке АТФ, что и вызывает окислительно-восстановительный дисбаланс, оказывающийся в конечном счете для нее смертельным (более подробная схема изображена на рис. 1).

В этом апреле в журнале Science вышла статья биологов из Массачусетского технологического института (MIT) под руководством Грэма Уокера (Graham Walker), продолжающая и дополняющая работы Коллинза, что подтвердилось участием последнего в публикации.

Группа Уокера занимается изучением ДНК-полимеразы E. coli DinB (про более раннюю их работу уже выходила статья на «Элементах», см. Объяснен механизм копирования сбойных блоков в ДНК, «Элементы», 19.01.2006). DinB — это полимераза транслезионного синтеза (см. translesion synthesis), способная работать на поврежденных ДНК-матрицах (например, содержащих окисленные нуклеотиды, или тиминовые димеры (см. thymine dimer), являющиеся непреодолимым препятствием для основной ДНК-полимеразы E. coli — ДНК-полимеразы III). dinB является жизненно важным для клетки геном, позволяющим переживать стресс. Тем не менее, искусственное увеличение числа копий DinB («сверхэкспрессия») является смертельным для бактерии. Уокер и его коллеги решили проверить, не является ли гибель клетки и в этом случае зависящей от гидроксил-радикалов. Для этого они проводили сверхэкспрессию DinB либо в присутствии «захватчика» свободных радикалов, тиомочевины, либо в присутствии хелатора ионов железа 2,2’‑дипиридила, либо в анаэробных условиях. Оказалось, что любое из этих ухищрений способно полностью предотвратить гибель клеток.

Одной из важных потенциальных мишеней активных форм кислорода является азотистое основание гуанин. Окисленный гуаниновый нуклеотид, 8‑оксо-дезоксигуанидин (8‑oxo‑dG), является источником мутаций: он способен образовывать комплементарные пары как с С (цитозином), так и с А (аденином) (неповрежденный нуклеотид G в нормальных условиях образует пары только с С). В свою очередь, полимераза DinB, обладая пониженной точностью копирования, способна использовать окисленный 8‑оксо-дезоксигуанидинтрифосфат (8‑oxo‑dGTP) в качестве субстрата, вставляя его напротив А или напротив С. Может быть, при сверхэкспрессии DinB включает чересчур много 8‑oxo‑dG в состав ДНК, и клетка погибает от слишком большого числа мутаций? Ученые создали искусственную форму DinB, в которой замена одной аминокислоты значительно снижает возможность использования 8‑oxo‑dGTP в качестве субстрата. Как и предполагалось, сверхэкспрессия такой полимеразы безопасна для клеток.

Тем не менее, непосредственное мутагенное действие не может объяснить наблюдаемой скорости гибели клеток: DinB синтезирует ДНК очень медленно, и шанс, что достаточное количество клеток получит летальную мутацию за время эксперимента, продолжающегося несколько часов, очень невелик. Скорее всего, причина не в самих мутациях, а в попытках клетки их исправить: виновата система эксцизионной репарации (см. base excision repair), ответственная за распознавание и удаление поврежденных оснований. Если два окисленных гуаниновых нуклеотида расположены рядом друг с другом, действие ферментов-гликозилаз MutM и MutY может привести к образованию двухцепочечного разрыва ДНК (рис. 2). Действительно, оказалось, что удаление этих двух генов помогает клеткам выживать при сверхэкспрессии DinB. Другим способом почти полностью защитить клетки от гибели было одновременно с DinB сверхэкспрессировать фермент MutT, способный узнавать поврежденный 8‑oxo‑dGTP еще до того, как он встроится в ДНК, и гидролизовать его.

Полимераза DinB (Pol) способна включать окисленные гуаниновые нуклеотиды (GO) в состав ДНК

Рис. 2. Полимераза DinB (Pol) способна включать окисленные гуаниновые нуклеотиды (GO) в состав ДНК. Если они встроятся на небольшом расстоянии друг от друга, последующее действие ферментов репарации MutM и MutY приведет к образованию потенциально летального двухцепочечного разрыва ДНК. Ситуация на картинке справа возникает, когда DinB включает 8‑oxo‑dG напротив уже существующего повреждения на другой цепи. Изображение из сопроводительных материалов (PDF, 877 КБ) к обсуждаемой статье Foti et al., в Science

Какая же связь между этими открытиями и бактерицидным действием антибиотиков? Оказывается, токсичное действие ·OH‑радикалов, образующихся при действии антибиотиков, в основном связано именно с окислением гуанина. Так, сверхэкспрессия MutT способна на несколько порядков увеличить выживаемость клеток, подвергшихся действию фторхинолона, норфлоксацина, пенициллина или канамицина. К схожим результатам приводит «выбивание» генов двух полимераз, способных включать в состав ДНК 8‑oxo‑dG (DinB и UmuDC) или генов гликозилаз MutM и MutY, репарирующих поврежденное основание. Таким образом, долгий путь к установлению истинных причин гибели клеток под действием антибиотиков почти пройден; практическое применение полученных знаний позволит, как надеются ученые, значительно усилить потенциал существующих антибиотиков и преодолеть возникающую у микроорганизмов резистентность.

Источник: James J. Foti, Babho Devadoss, Jonathan A. Winkler, James J. Collins, Graham C. Walker. Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics // Science. 2012. V. 336. Pp. 315–319.

См. также:
1) Daniel D. Dwyer, Michael A. Kohanski, Boris Hayete, James J. Collins. Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli // Mol Syst Biol. 2007 V. 3. P. 91.
2) Michael A. Kohanski, Daniel J. Dwyer, Boris Hayete, Carolyn A. Lawrence, James J. Collins. A common mechanism of cellular death induced by bactericidal antibiotics // Cell. 2007. V. 130. Pp. 797–810.
3) Michael A. Kohanski, Daniel D. Dwyer, James J. Collins. How antibiotics kill bacteria: from targets to networks // Nat Rev Microbiol. 2010. V. 8. Pp. 423–435.

Дмитрий Гиляров


Комментарии (6)



Последние новости: МедицинаМикробиологияМолекулярная биологияДмитрий Гиляров

15.09
Разработан метод пространственной визуализации транскрипции генов
13.09
Эволюционный эксперимент показал, где и как появляются наиболее приспособленные особи
1.09
Т-клетки здоровых людей научили распознавать чужой рак
26.08
Расшифрована структура комплекса I дыхательной цепи митохондрий быка
29.07
Систему противовирусной защиты можно применить для эффективной иммунотерапии рака
6.07
Метанокисляющие микроорганизмы донных осадков оказались неожиданно разнообразными
5.07
Биоразнообразие стимулирует собственный рост
21.06
Кишечная бактерия влияет на социальное поведение мышей
10.06
Удалось выяснить, почему рак может уснуть и проснуться через много лет
18.05
Обнаружены одноклеточные организмы с ядром, но без митохондрий

Научная картинка дня


Новости науки по темам: антропология, археология, астрономическая научная картинка дня, астрономия, биология, биотехнологии, генетика, геология, затмения, информационные технологии, космос, лингвистика, математика, медицина, нанотехнологии, наука в России, наука и общество, Нобелевские премии, палеонтология, Первое апреля, психология, технологии, физика, химия, эволюция, экология, энергетика, этология

Новости науки по авторам: Валентин Анаников, Дарья Баранова, Вера Башмакова, Александр Бердичевский, Максим Борисов, Варвара Веденина, Александр Венедюхин, Михаил Волович, Михаил Гарбузов, Алексей Гиляров, Дмитрий Гиляров, Сергей Глаголев, Евгений Гордеев, Николай Горностаев, Владимир Гриньков, Дмитрий Дагаев, Юрий Ерин, Анастасия Еськова, Дмитрий Жарков, Андрей Журавлёв, Дмитрий Замолодчиков, Игорь Иванов, Вячеслав Калинин, Павел Квартальнов, Мария Кирсанова, Дмитрий Кирюхин, Александр Козловский, Юлия Кондратенко, Артем Коржиманов, Ольга Кочина, Аркадий Курамшин, Виталий Кушниров, Иван Лаврёнов, Алексей Левин, Андрей Логинов, Сергей Лысенков, Лейла Мамирова, Александр Марков, Мария Медникова, Вадим Мокиевский, Григорий Молев, Тарас Молотилин, Антон Морковин, Марат Мусин, Максим Нагорных, Елена Наймарк, Алексей Опаев, Петр Петров, Александр Пиперски, Константин Попадьин, Сергей Попов, Роман Ракитов, Татьяна Романовская, Александр Самардак, Александр Сергеев, Андрей Сидоренко, Виктория Скобеева, Даниил Смирнов, Павел Смирнов, Дарья Спасская, Любовь Стрельникова, Дмитрий Сутормин, Алексей Тимошенко, Александр Токарев, Александр Храмов, Мария Шнырёва, Сергей Ястребов, Светлана Ястребова

Новости науки по месяцам: 2016 IX, VIII, VII, VI, V, IV, III, II, I  2015 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2014 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2013 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2012 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2011 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2010 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2009 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2008 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2007 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2006 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2005 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I 

Новости науки почтой (рассылка на Subscribe.ru):

 


Где еще почитать научные новости: «Биомолекула», «Вокруг света», Газета.ру. Наука, «Наука и жизнь», Наука и технологии РФ, «Научная Россия», «Популярная механика», РИА Наука, «Чердак», N+1, Naked Science

 


при поддержке фонда Дмитрия Зимина - Династия