Элементы Элементы большой науки

Поставить закладку

Напишите нам

Карта сайта

Содержание
Энциклопедия
Новости науки
LHC
Картинка дня
Библиотека
Видеотека
Книжный клуб
Задачи
Масштабы: времена
Детские вопросы
Плакаты
Научный календарь
Наука и право
ЖОБ
Наука в Рунете

Поиск

Подпишитесь на «Элементы»



ВКонтакте
в Твиттере
в Фейсбуке
на Youtube
в Instagram



Библиотека

 
К. Циммер
«Микрокосм». Глава из книги


А. Огнёв
Откуда жизнь? Еще теплее!


Р. Докинз
«Эгоистичный ген». Глава из книги


А. Бердников
Вдоль по лунной дорожке


В. Бабицкая, С. Горбунов
Как и зачем птицы общаются с охотниками за медом


Е. Чернова
Хаос и порядок: фрактальный мир


У. Айзексон
«Инноваторы». Глава из книги


Н. Резник
Жираф большой, ему видней, и сам он хорошо заметен


М. Софер
Куда уходит лето?


С. Петранек
«Как мы будем жить на Марсе». Глава из книги







Главная / Новости науки версия для печати

Проясняется механизм формирования синапсов


Схема формирования возбудительного и тормозного синапса под действием FGF22 и FGF7. Изображение из обсуждаемой статьи в Nature
Схема формирования возбудительного и тормозного синапса под действием FGF22 и FGF7. Изображение из обсуждаемой статьи в Nature

Правильный баланс между глутаматными (возбудительными) и ГАМК-овыми (тормозными) синапсами — одно из необходимых условий для правильной работы мозга. Нарушение этого баланса может стать причиной целого веера заболеваний — от эпилепсии до синдрома Туретта. Но каковы механизмы, благодаря которым между двумя данными нейронами образуется синапс нужного типа, до сих пор оставалось загадкой. И постепенно эта загадка разгадывается: выяснилось, что два фактора роста фибробластов — FGF22 и FGF7 — способствуют формированию возбудительных и тормозных синапсов соответственно.

Структура синапса. Изображение с сайта ru.wikipedia.org
Структура синапса. Изображение с сайта ru.wikipedia.org

Синапс — это контакт между двумя нейронами (или между нейроном и эффекторной клеткой). Когда в синапс приходит импульс, синаптические пузырьки (их еще называют везикулами) «выплевывают» содержащиеся в них нейромедиаторы в синаптическую щель; эти медиаторы «садятся» на соответствующие рецепторы постсинаптической мембраны. Активация рецепторов вызывает изменение трансмембранных ионных токов, и, в зависимости от медиатора и рецептора, окрестный участок мембраны либо деполяризуется (тогда мы имеем дело с возбудительным постсинаптическим потенциалом, ВПСП), либо гиперполяризуется (тогда перед нами тормозный постсинаптический потенциал, ТПСП).

При возникновении синапса в образующих его участках нейронов происходит множество изменений. Например, в пресинаптической части перестраивается цитоскелет, появляются скопления синаптических везикул и возникает механизм их оборота и так далее. Само собой, эти изменения не могут происходить просто так, в их основе лежат какие-то молекулярные механизмы. Однако сейчас об этих механизмах почти ничего не известно. Есть только несколько «путеводных ниточек» — например, недавно было показано, что члены большого семейства белков — факторов роста фибробластов (см. Fibroblast growth factor) — FGF22, FGF7 и FGF10 способствуют образованию нервно-мышечных соединений, а также синапсов в мозжечке.

Однако что именно делают эти белки во время синаптогенеза, до сих пор было неясно. Группа исследователей из Мичиганского университета решила разобраться в этом вопросе.

В фокусе внимания исследователей оказалась область CA3 гиппокампа. Там высок уровень матричных РНК, кодирующих FGF22 и FGF7, а раз наши белки в данном регионе присутствуют, они здесь явно для чего-то нужны.

Если белок выполняет какую-нибудь заметную функцию, то проще всего узнать его роль, просто «выключив» его и посмотрев, какие изменения произойдут с организмом. Поэтому для экспериментов использовались мыши, нокаутные по генам FGF22 и FGF7 (то есть лишенные данных белков); линии этих мышей назывались FGF22KO и FGF7KO соответственно.

Никаких заметных анатомических изменений в гиппокампе у нокаутных мышей замечено не было. Однако кластеризация белка синаптических везикул SV2 в регионе CA3 у обеих линий нокаутов была серьезно нарушена. Это означает, что оба наши белка имеют какое-то отношение к образованию везикул — пузырьков с нейромедиатором, выбрасываемых в синаптическую щель во время передачи сигнала. Причем, что интересно, в близком регионе CA1 никаких проблем с тем же белком SV2 не было — значит, в синапсах CA1 наши белки не работают.

Окрашивание на белок SV2 в регионах гиппокампа CA1 и CA3 (SR, stratum radiatum и SL, stratum lucidum — участки данных регионов) у мышей-нокаутов и мышей дикого типа (WT) на 14-й день после рождения. Изображение из обсуждаемой статьи в Nature
Окрашивание на белок SV2 в регионах гиппокампа CA1 и CA3 (SR, stratum radiatum и SL, stratum lucidum — участки данных регионов) у мышей-нокаутов и мышей дикого типа (WT) на 14-й день после рождения. Изображение из обсуждаемой статьи в Nature

Еще интереснее то, что дефект в кластеризации синаптических везикул и у FGF22KO, и у FGF7KO был неполным. Это выглядело так, как будто каждый из этих белков помогает сформироваться не всем синапсам данной области, а только части из них, поэтому и «выключение» одного из белков не «выключает» все синапсы вместе.

Однако по какому же признаку каждый из этих белков выбирает «свои» синапсы? Ученые предположили, что один из них «заведует» возбудительными глутаматными, а другой — тормозными ГАМК-овыми синапсами (ГАМК — гамма-аминомасляная кислота). И действительно, оказалось, что кластеризация везикул в глутаматных синапсах понижена у FGF22KO и находится на нормальном уровне у FGF7KO, а ГАМК-овые везикулы хуже кластеризуются у FGF7KO, а у FGF22KO, наоборот, в порядке. В то же время постсинаптическая часть что у глутаматных, что у ГАМК-овых синапсов, судя по всему, не нарушена. Всё это свидетельствовало о том, что FGF22 «помогает» возникнуть пресинаптической части глутаматных синапсов, а FGF7 — ГАМК-овых, в то время как к постсинаптической части эти белки, видимо, не имеют отношения.

Эта догадка подтвердилась, когда ученые решили сравнить ультраструктуру возбудительных и тормозных синапсов у FGF22KO, FGF7KO и мышей дикого типа. Оказалось, что в возбудительных синапсах у FGF22KO везикулы мельче и более рассредоточены, чем у мышей дикого типа. У FGF7KO не было такой проблемы в возбудительных синапсах, зато она возникала в тормозных. Результаты этого эксперимента, а также целой серии дополнительных опытов, подтвердили, что FGF22 помогает сформироваться глутаматным синапсам, а FGF7 — ГАМК-овым.

Окрашивание на глутаматный (сверху) и ГАМК-овый (снизу) транспортеры (то есть белки, пакующие данные медиаторы в везикулы) у нокаутов и мышей дикого типа. SL и SR — участки региона CAЗ гиппокампа. Видно, что у FGF22 проблемы с VGluT, а у FGF7 — с VGAT. Изображение из обсуждаемой статьи в Nature
Окрашивание на белок SV2 в регионах гиппокампа CA1 и CA3 (SR, stratum radiatum и SL, stratum lucidum — участки данных регионов) у мышей-нокаутов и мышей дикого типа (WT) на 14-й день после рождения. Изображение из обсуждаемой статьи в Nature

Хорошо, но почему же эти белки действуют по-разному? Судя по всему, дело обстоит так. FGF7 способен связываться только с одним рецептором — FGFR2b, а FGF22 — сразу с двумя: FGFR2b и FGFR1b (хотя FGFR1b он, похоже, «любит» больше). «Включение» разных рецепторов вызывает различные каскады реакций, которые приводят к формированию разных везикул; это, видимо, и влечет за собой образование различных типов синапсов. А поскольку, как удалось доказать исследователям, FGF7 и FGF22 локализуются в нейронах в различных и неперекрывающихся областях, то «конкуренции» по поводу того, какой именно синапс появится в данном месте, не возникает. Да, стоит отметить одну важную деталь. Оба белка обнаруживаются в дендритах, то есть в постсинаптической части синапса. Это значит, что постсинаптическая часть «дирижирует» образованием пресинаптической части.

Развитие припадков у мышей, нокаутных по генам FGF22, FGF7, и мышей дикого типа (wt). По горизонтальной шкале показано количество инъекций пентилентетразолом, вызывающим припадки, а по вертикальной — уровень припадка. Изображение из обсуждаемой статьи в Nature
Развитие припадков у мышей, нокаутных по генам FGF22, FGF7, и мышей дикого типа (wt). По горизонтальной шкале показано количество инъекций

Более или менее разобравшись с «вечными вопросами» (что это такое и как это работает), ученые попробовали понять, как связана работа исследованных белков с работой целого мозга. Дело в том, что некоторые болезни, например эпилепсия, могут быть вызваны неправильным балансом между возбудительными и тормозными синапсами в гиппокампе. А поскольку наши белки занимаются именно созданием правильного баланса, то вполне возможно, они как-то связаны с проявлением эпилепсии. Исследователи решили проверить это довольно простым способом — подвергли нокаутных по нашим белкам мышей киндлингу (см. Kindling), то есть вызвали у них искусственные эпилептические припадки. Оказалось, что FGF7KO-мыши гораздо сильнее подвержены припадкам, чем мыши дикого типа, зато у FGF22KO за весь период исследования не было припадков вовсе. Всё это может означать, что наши белки имеют к возникновению эпилепсии прямое отношение и, больше того, что открываются новые пути для борьбы с этой болезнью.

Источник: Akiko Terauchi, Erin M. Johnson-Venkatesh, Anna B. Toth, Danish Javed, Michael A. Sutton, Hisashi Umemori. Distinct FGFs promote differentiation of excitatory and inhibitory synapses. // Nature 465, 783–787 (10 June 2010).

Вера Башмакова


Комментировать



Последние новости: НейробиологияГенетикаМолекулярная биологияВера Башмакова

20.09
Третий — не лишний: в большинстве лишайников присутствуют два гриба и водоросль
15.09
Разработан метод пространственной визуализации транскрипции генов
6.09
Собачий мозг обрабатывает речевую информацию почти так же, как человеческий
26.08
Расшифрована структура комплекса I дыхательной цепи митохондрий быка
2.08
Гибридизация однодомных и двудомных растений увеличивает разнообразие половых фенотипов
11.07
Архаичные гены костных ганоидов разнообразнее, чем у более молодых групп позвоночных
28.06
Подростки лучше учатся на положительном опыте, чем на отрицательном
15.06
Получение генов пектиназ от протеобактерий резко ускорило видообразование палочников
14.06
Полиплоидность предков эукариот — ключ к пониманию происхождения митоза и мейоза
10.06
Удалось выяснить, почему рак может уснуть и проснуться через много лет

Научная картинка дня


Новости науки по темам: антропология, археология, астрономическая научная картинка дня, астрономия, биология, биотехнологии, генетика, геология, затмения, информационные технологии, космос, лингвистика, математика, медицина, нанотехнологии, наука в России, наука и общество, Нобелевские премии, палеонтология, Первое апреля, психология, технологии, физика, химия, эволюция, экология, энергетика, этология

Новости науки по авторам: Валентин Анаников, Дарья Баранова, Вера Башмакова, Александр Бердичевский, Максим Борисов, Варвара Веденина, Александр Венедюхин, Михаил Волович, Михаил Гарбузов, Алексей Гиляров, Дмитрий Гиляров, Сергей Глаголев, Евгений Гордеев, Николай Горностаев, Владимир Гриньков, Дмитрий Дагаев, Юрий Ерин, Анастасия Еськова, Дмитрий Жарков, Андрей Журавлёв, Дмитрий Замолодчиков, Игорь Иванов, Вячеслав Калинин, Павел Квартальнов, Мария Кирсанова, Дмитрий Кирюхин, Александр Козловский, Юлия Кондратенко, Артем Коржиманов, Ольга Кочина, Аркадий Курамшин, Виталий Кушниров, Иван Лаврёнов, Алексей Левин, Андрей Логинов, Сергей Лысенков, Лейла Мамирова, Александр Марков, Мария Медникова, Вадим Мокиевский, Григорий Молев, Тарас Молотилин, Антон Морковин, Марат Мусин, Максим Нагорных, Елена Наймарк, Алексей Опаев, Петр Петров, Александр Пиперски, Константин Попадьин, Сергей Попов, Роман Ракитов, Татьяна Романовская, Александр Самардак, Александр Сергеев, Андрей Сидоренко, Виктория Скобеева, Даниил Смирнов, Павел Смирнов, Дарья Спасская, Любовь Стрельникова, Дмитрий Сутормин, Алексей Тимошенко, Александр Токарев, Александр Храмов, Мария Шнырёва, Сергей Ястребов, Светлана Ястребова

Новости науки по месяцам: 2016 IX, VIII, VII, VI, V, IV, III, II, I  2015 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2014 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2013 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2012 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2011 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2010 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2009 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2008 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2007 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2006 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2005 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I 

Новости науки почтой (рассылка на Subscribe.ru):

 


Где еще почитать научные новости: «Биомолекула», «Вокруг света», Газета.ру. Наука, «Наука и жизнь», Наука и технологии РФ, «Научная Россия», «Популярная механика», РИА Наука, «Чердак», N+1, Naked Science

 


при поддержке фонда Дмитрия Зимина - Династия