Элементы Элементы большой науки

Поставить закладку

Напишите нам

Карта сайта

Содержание
Энциклопедия
Новости науки
LHC
Картинка дня
Библиотека
Видеотека
Книжный клуб
Задачи
Масштабы: времена
Детские вопросы
Плакаты
Научный календарь
Наука и право
ЖОБ
Наука в Рунете

Поиск

Подпишитесь на «Элементы»



ВКонтакте
в Твиттере
в Фейсбуке
на Youtube
в Instagram



Библиотека

 
Т. Дамур
«Мир по Эйнштейну». Глава из книги


Л. Франк
«Мой неповторимый геном». Глава из книги


В. Винниченко
Почему дельфины никогда не спят?



В память о Леониде Вениаминовиче Келдыше (07.04.1931–11.11.2016)


Н. Жизан
«Квантовая случайность». Глава из книги


Интервью с С. Ландо
Сергей Ландо: «Прорывы в математике плохо предсказуемы»


В. Гаврилов
Загадка зарянки


А. Левин
Астрономия темного


В. Мацарский
Бодался Чандра с сэром Артуром


О. Макаров
Секрет разделения







Главная / Новости науки версия для печати

Дарвиновская эволюция без участия генов


Два варианта пространственной конфигурации прионного белка: a — нормальная конфигурация (преобладают альфа-спирали); b — «патологическая» конфигурация (преобладают бета-листы). Изображение с сайта www.cogs.susx.ac.uk/users/ctf20
Два варианта пространственной конфигурации прионного белка: a — нормальная конфигурация (преобладают альфа-спирали); b — «патологическая» конфигурация (преобладают бета-листы). Изображение с сайта www.cogs.susx.ac.uk/users/ctf20

Прионы — инфекционные агенты белковой природы, вызывающие смертельные заболевания у животных и человека. Прионы представляют собой неправильно свернутые молекулы прионного белка PrP, способные «размножаться», превращая нормальные молекулы PrP в подобие самих себя. Оказалось, что у прионов есть нечто похожее на наследственную изменчивость, что позволяет им эволюционировать под действием естественного отбора. Они могут приспосабливаться к разным типам клеток и даже вырабатывать устойчивость к лекарствам.

Земная жизнь основана на размножении репликаторов определенного типа — полинуклеотидов РНК и ДНК. Но это далеко не единственный тип репликаторов, который в принципе может существовать в природе. Многие философы и социологи считают, что в культурной эволюции большую роль играют мемы — единицы культурной информации, которые используют человеческий разум для собственного выживания и размножения примерно так же, как гены используют клетку. Предполагается (хотя и не доказано окончательно), что мемы, как и гены, обладают двумя ключевыми свойствами, необходимыми для «дарвиновской» эволюции. Первое из них — способность мутировать и передавать мутации по наследству («наследственная изменчивость»). Второе — способность возникающих мутаций влиять на эффективность размножения репликатора («дифференциальное размножение»). Если репликатор обладает двумя этими свойствами, он автоматически начинает эволюционировать, приспосабливаясь к среде своего обитания. Сочетание наследственной изменчивости с дифференциальным размножением называют «естественным отбором».

Прионы — «нестандартные» биологические репликаторы, представляющие собой особым образом свернутые молекулы прионного белка PrP. Этот белок в норме присутствует на мембранах нейронов и выполняет какие-то полезные функции, связанные с передачей сигналов. Какие именно — пока еще не совсем ясно (Chiesa R., Harris D.A., 2009. Fishing for Prion Protein Function // PLoS Biol 7(3): e1000075). Безобидный прионный белок превращается в смертоносный прион в результате «неправильного сворачивания» (см. рисунок).

Прион обладает двумя удивительными свойствами. Во-первых, он заставляет нормальные прионные белки сворачиваться неправильно, превращая их в свои копии. Так прион «размножается». Во-вторых, он устойчив к действию протеолитических ферментов, задача которых состоит в уничтожении отслуживших белковых молекул. По-видимому, оба свойства связаны со способностью прионов слипаться в большие комки из множества молекул. Первые несколько слипшихся прионов становятся «центром кристаллизации», к которому затем прилипают всё новые и новые молекулы. В конце концов это приводит к нарушению работы нервной клетки.

Самое неприятное, что нейрон, в котором «завелись» прионы, заражает ими соседние нейроны, и в результате прионная инфекция распространяется по нервной системе. Способность к размножению, устойчивость к протеолитическим ферментам и заразность делают прионы опасными инфекционными агентами, похожими по своим свойствам на вирусы. Как и вирусы, прионы могут размножаться только за счет ресурсов, предоставляемых хозяйской клеткой. Вирусу необходимо, чтобы клетка синтезировала для него вирусные белки согласно инструкциям, записанным в вирусной ДНК или РНК. Приону необходимо, чтобы клетка синтезировала для него нормальные молекулы прионного белка, а прион уже сам превращает их в свои копии. Разница между вирусом и прионом весьма существенна для молекулярного биолога, но совсем не так заметна для эпидемиолога или, тем более, заболевшего животного. Прионы вызывают ряд смертельных нейродегенеративных заболеваний у человека и других млекопитающих, в том числе коровье бешенство и куру.

То, что прионы являются самыми настоящими репликаторами, сомнений не вызывает. Но до сих пор было неясно, есть ли у них весь необходимый «джентльменский набор» для дарвиновской эволюции. Способны ли прионы мутировать и передавать мутации по наследству, и если да, то могут ли эти мутации влиять на эффективность размножения прионов? Иными словами, действует ли на прионы естественный отбор? Способны ли они приспосабливаться к меняющимся условиям — например, к лекарственным препаратам, предназначенным для борьбы с прионными инфекциями?

Статья американских ученых, опубликованная в последнем номере журнала Science, позволяет ответить на эти вопросы положительно.

Ранее было замечено, что встречаются разные «штаммы» (разновидности) прионов, которые могут развиваться в нейронах одного и того же вида животных или в одной и той же клеточной культуре. Например, у мышей из одной и той же лабораторной линии, имеющих одинаковые прионные белки PrP, может встречаться 15 или даже более разных прионных инфекций, различающихся по скорости развития болезни и неврологическим симптомам. Было также замечено, что если взять штамм прионов у одного вида животных, заразить им другой вид, а потом взять прионы у второго вида и снова заразить ими первый, то симптомы в некоторых случаях оказываются уже другими.

Это позволило предположить, что у белка PrP есть несколько разных вариантов неправильного сворачивания и превращения в прион, причем каждый из вариантов устойчиво наследуется, то есть сохраняется в ряду «поколений» прионов. Возможно, прионы могут «мутировать» и передавать свои мутации по наследству. Мутации прионов, очевидно, не связаны с изменениями аминокислотной последовательности белка, а представляют собой изменения вторичной или третичной структуры (то есть способа сворачивания) белковой молекулы.

Чтобы проверить эти предположения, авторы провели множество экспериментов с разными штаммами прионов и разными клеточными культурами. Они обнаружили, что свойства прионов закономерным образом меняются, когда их пересаживают из одних клеток в другие, причем изменения происходят не сразу, а постепенно.

Для начала авторы заразили клеточную культуру PK1 прионами штамма 22L из мозга больной мыши. Оказалось, что чем дольше прионы живут и размножаются в клетках PK1, тем сильнее они отличаются по своим свойствам от исходных, «диких» прионов из мозга мыши. Исходные прионы 22L успешно заражают другую клеточную культуру, использовавшуюся в экспериментах (R33). Кроме того, эти прионы нечувствительны к действию вещества SWA (swainsonine). Авторы ранее установили, что SWA замедляет размножение некоторых разновидностей прионов в некоторых клеточных культурах. Однако по мере жизни прионов в клетках PK1 они постепенно утрачивали способность инфицировать клетки R33 и становились всё более чувствительными к SWA.

По-видимому, это означает, что популяция прионов в мозге больной мыши исходно была гетерогенной (разнородной), и в ней преобладали прионы, устойчивые к SWA и заразные по отношению к R33. Однако жизнь в клетках PK1 приводит к тому, что в популяции постепенно растет доля прионов, чувствительных к SWA и не способных заражать R33. Можно предположить, что прионы с этими свойствами быстрее размножаются в клетках PK1, то есть налицо эволюция под действием естественного отбора (если пользоваться «минималистским» определением, согласно которому эволюция — это изменение численного соотношения наследственных вариантов в популяции).

Способны ли прионы восстанавливать утраченную устойчивость к лекарственному препарату? Чтобы выяснить это, авторы пересаживали прионы, чувствительные к SWA, из клеток PK1 в мозг мышей. К тому времени, когда заболевание у зараженных мышей достигло терминальной стадии (через 147 дней после заражения), прионы полностью восстановили устойчивость к SWA.

Еще более наглядные результаты были получены в экспериментах с клеточными культурами, в которых «жили» прионы, чувствительные к SWA. Оказалось, что если выращивать зараженные клетки в присутствии небольших концентраций SWA, то прионы довольно быстро вырабатывают устойчивость к этому препарату. Таким образом, эти необычные репликаторы приспосабливаются к меняющимся условиям совсем как какие-нибудь вирусы или бактерии.

Выработка устойчивости в этих экспериментах могла происходить либо за счет преимущественного размножения устойчивых разновидностей прионов, которые уже существовали в исходной популяции (хоть и в малом количестве), либо за счет появления новых мутаций в ходе эксперимента. При помощи очень сложных дополнительных опытов авторы показали, что прионы-мутанты, устойчивые к SWA, спонтанно возникают в популяции, на 100% состоящей из неустойчивых прионов, даже в отсутствии SWA, то есть когда в такой мутации нет необходимости. Частота таких мутаций — примерно один случай на миллион клеточных делений.

Таким образом, прионы мутируют, передают мутации по наследству, и эти мутации влияют на эффективность размножения прионов в разных условиях. Иными словами, у прионов есть всё необходимое, чтобы эволюционировать под действием естественного отбора. Правда, пока не ясно, как далеко может зайти такая эволюция. По идее, у прионов должно быть гораздо меньше эволюционных возможностей, чем у тех же вирусов, потому что число возможных пространственных конфигураций белка PrP вряд ли может сравниться с невообразимо громадным числом возможных последовательностей нуклеотидов в геноме. Не ясно также, может ли естественный отбор у прионов быть «накопительным», то есть создавать новые свойства путем последовательного закрепления множества небольших наследственных изменений. Скорее, отбор у прионов всё-таки «одноразовый», работающий с единичными мутациями, причем набор возможных мутаций невелик.

Авторы исследовали эволюцию только двух «фенотипических признаков» прионов — устойчивости к SWA и способности заражать клетки R33. Не исключено, что естественный полиморфизм у прионов затрагивает также и многие другие их свойства, влияющие на эффективность размножения прионов в разных условиях. В этом случае реальная частота мутирования прионов может быть существенно выше. Возможно, к популяциям прионов приложимо даже понятие «квазивид», которое до сих пор применяли только к вирусам (см.: Вирусы-мутанты помогают друг другу в борьбе за выживание, «Элементы», 14.12.2005).

Авторы отмечают, что обнаруженная у прионов способность к «дарвиновской» эволюции хорошо объясняет некоторые странные особенности прионных инфекций, которые ранее не имели четкого объяснения. Например, было замечено, что при переходе инфекции от одного вида животных к другому сначала, как правило, наблюдается очень медленное развитие болезни и низкая инфекционность. Но уже после нескольких циклов внутривидового перезаражения прион становится более заразным, и болезнь развивается стремительнее. Очевидно, это объясняется тем, что прионам требуется время, чтобы приспособиться к новому хозяину.

Данная работа показала, что при разработке лекарств от прионных болезней лучше бороться не с конкретными штаммами прионов — к таким лекарствам прионы могут приспособиться, — а пытаться повысить устойчивость пространственной конфигурации нормального прионного белка, чтобы он всегда сворачивался правильно. Самым радикальным средством борьбы с этими болезнями является полное отключение гена, кодирующего белок PrP. Правда, пока не ясно, к каким побочным последствиям это может привести. Мыши с отключенным геном прионного белка выживают и даже не имеют каких-то особо тяжелых дефектов, но у них наблюдается множество мелких странностей: от нарушенного суточного ритма до склонности к ишемии и судорогам.

Источник: Jiali Li et al. Darwinian Evolution of Prions in Cell Culture // Science. 2010. V. 327. P. 869–872.

Александр Марков


Комментарии (12)



Последние новости: НейробиологияМолекулярная биологияЭволюцияАлександр Марков

05.12
Хищные бактерии помогают иммунной системе справиться с инфекцией
28.11
У собак есть эпизодическая память
24.11
Метаморфоз у личинок червя Hydroides elegans запускается бактериями
22.11
Фиджийские муравьи сами выращивают для себя жилища
16.11
За «боязнь» щекотки у крыс отвечает соматосенсорная кора
14.11
Ген, работающий в мышцах и костях, у обезьян стал регулировать развитие мозга
10.11
Нейропротез вернул парализованным макакам-резусам способность ходить
09.11
Разнообразие пищевого поведения у нематоды Caenorhabditis elegans поддерживается балансирующим отбором
08.11
Многие беспозвоночные, подобно млекопитающим, вынашивают и выкармливают свое потомство
07.11
Узкая пищевая специализация бывает эволюционно невыгодной

Научная картинка дня


Новости науки по темам: антропология, археология, астрономическая научная картинка дня, астрономия, биология, биотехнологии, генетика, геология, затмения, информационные технологии, космос, лингвистика, математика, медицина, нанотехнологии, наука в России, наука и общество, Нобелевские премии, палеонтология, Первое апреля, психология, технологии, физика, химия, эволюция, экология, энергетика, этология

Новости науки по авторам: Валентин Анаников, Дарья Баранова, Вера Башмакова, Александр Бердичевский, Максим Борисов, Варвара Веденина, Александр Венедюхин, Михаил Волович, Михаил Гарбузов, Алексей Гиляров, Дмитрий Гиляров, Сергей Глаголев, Евгений Гордеев, Николай Горностаев, Владимир Гриньков, Дмитрий Дагаев, Юрий Ерин, Анастасия Еськова, Дмитрий Жарков, Андрей Журавлёв, Дмитрий Замолодчиков, Игорь Иванов, Вячеслав Калинин, Павел Квартальнов, Мария Кирсанова, Дмитрий Кирюхин, Александр Козловский, Юлия Кондратенко, Артем Коржиманов, Ольга Кочина, Аркадий Курамшин, Виталий Кушниров, Иван Лаврёнов, Алексей Левин, Андрей Логинов, Сергей Лысенков, Лейла Мамирова, Александр Марков, Мария Медникова, Вадим Мокиевский, Григорий Молев, Тарас Молотилин, Антон Морковин, Марат Мусин, Максим Нагорных, Елена Наймарк, Алексей Опаев, Петр Петров, Александр Пиперски, Константин Попадьин, Сергей Попов, Роман Ракитов, Татьяна Романовская, Александр Самардак, Александр Сергеев, Андрей Сидоренко, Виктория Скобеева, Даниил Смирнов, Павел Смирнов, Дарья Спасская, Любовь Стрельникова, Дмитрий Сутормин, Алексей Тимошенко, Александр Токарев, Александр Храмов, Мария Шнырёва, Сергей Ястребов, Светлана Ястребова

Новости науки по месяцам: 2016 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2015 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2014 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2013 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2012 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2011 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2010 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2009 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2008 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2007 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2006 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2005 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I 

Новости науки почтой (рассылка на Subscribe.ru):

 


Где еще почитать научные новости: «Биомолекула», «Вокруг света», Газета.ру. Наука, «Индикатор», «Наука и жизнь», Наука и технологии РФ, «Научная Россия», «Популярная механика», РИА Наука, «Чердак», N+1, Naked Science

 


при поддержке фонда Дмитрия Зимина - Династия