Элементы Элементы большой науки

Поставить закладку

Напишите нам

Карта сайта

Содержание
Энциклопедия
Новости науки
LHC
Картинка дня
Библиотека
Видеотека
Книжный клуб
Задачи
Масштабы: времена
Детские вопросы
Плакаты
Научный календарь
Наука и право
ЖОБ
Наука в Рунете

Поиск

Подпишитесь на «Элементы»


ВКонтакте
в Твиттере
в Фейсбуке



Библиотека

 
Ф. Вильчек
«Красота физики». Глава из книги


К. Каренина, А. Гилёв
Зачем степи артезианы?


Н. Резник
Густой волос и низкий голос


Дж. Бэрроу
«История науки в знаменитых изображениях». Глава из книги


М. Борисов
Хеопс на подошве Имхотепа и сад камней


С. Дробышевский
«Европейский папуас», или «Человек мира»: мужчина с Маркиной горы


М. Москалева
Студенты МГУ против лженауки


Ж. Резникова
И даман поманил за собой


В. Сурдин
Поиски новых планет


С. Горбунов
Сeratotherium simum cottoni. Последний из могикан







Главная / Новости науки версия для печати

Подтверждено существование новой аллотропной формы углерода


Рис. 1. Кристаллические структуры аллотропных модификаций углерода: a — алмаз, b — графит, c — лонсдейлит (гексагональный алмаз), d — карбин, e — фуллерен C60, f — аморфный углерод, g — одностенная углеродная нанотрубка. Рисунки с сайтов en.wikipedia.org и him.1september.ru
Рис. 1. Кристаллические структуры аллотропных модификаций углерода: a — алмаз, b — графит, c — лонсдейлит (гексагональный алмаз), d — карбин, e — фуллерен C60, f — аморфный углерод, g — одностенная углеродная нанотрубка. Рисунки с сайтов en.wikipedia.org и him.1september.ru

Эксперименты показывают, что холодное (при комнатной температуре) сжатие графита под давлением свыше 100 тыс. атмосфер приводит к появлению нового состояния углерода, сопровождающегося перестройкой его внутренней структуры и изменением физических свойств. Группе китайских, американских и российских ученых удалось теоретически рассчитать кристаллическую структуру графита, находящегося в таких условиях, и установить, что это неопознанное состояние углерода следует идентифицировать как его новую аллотропную форму. Исследователи назвали это состояние M-углерод.

По многообразию полиморфных, или аллотропных (так как углерод — простое вещество), модификаций углерод уникален. В зависимости от кристаллической структуры разновидности этого химического элемента могут представлять собой большой набор совершенно разных веществ, от алмаза до графита, с разными электронными и механическими свойствами.

Одной из самых известных аллотропных форм углерода является алмаз — трехмерная структура, характеризующаяся тетраэдрическим расположением атомов углерода в кристаллической решетке (рис. 1a). Это самый твердый из природных минералов — 10 по шкале твердости Мооса. Так, для разрушения алмаза необходимо использовать давление около 100 ГПа, или 1 млн атмосфер. По своим электрическим свойствам чистый алмаз — диэлектрик.

Другая всем знакомая разновидность углерода — графит — представляет собой двумерную слоеную кристаллическую структуру. В этих слоях атомы углерода связаны ковалентными связями и располагаются в вершинах шестиугольника. Между слоями действуют силы Ван-дер-Ваальса, значительно более слабые по сравнению с ковалентной связью. Отсюда и сильная анизотропия в физических свойствах графита. По шкале твердости (шкале Мооса) графит имеет наименьшую величину – 1. Кроме этого, он хороший проводник тока. А монослой графита представляет собой уже отдельное вещество — графен, который, в принципе, также можно отнести к аллотропным формам углерода, поскольку он обладает уникальными физическими свойствами.

Менее известны другие полиморфные модификации углерода — например, гексагональный алмаз (или лонсдейлит), а также карбин, открытые в 60-е годы прошлого века.

Лонсдейлит по своему внутреннему строению напоминает алмаз, но с немного иным типом «упаковки» атомов — атомы углерода образуют в нём гексагональную кристаллическую решетку. Отсюда его второе название — гексагональный алмаз. Интересно, что впервые лонсдейлит был обнаружен в метеоритном кратере в Аризоне (США). А в феврале 2009 года в журнале Physical Review Letters была опубликована статья, согласно которой чистый, не имеющий примесей лонсдейлит теоретически должен оказаться на 58% прочнее алмаза: его твердость будет равна 152 ГПа против приблизительно 100 ГПа у алмаза. Таким образом, теоретически именно лонсдейлит, а не алмаз, следует считать самым твердым веществом на Земле.

Карбин — это одномерная, линейная цепочка атомов углерода (см. статью «Карбин — третья аллотропная модификация углерода: открытие и свойства» в газете «Химия»). Карбин имеет полупроводниковые свойства, при этом под действием света его проводимость резко возрастает. Вначале карбин синтезировали в лаборатории, а позже нашли в природе в виде минерала — прожилок и вкраплений в графите — тоже в метеоритном кратере, в Баварии (Германия). Природный минерал получил название чаоит.

К аллотропным модификациям углерода следует отнести также и семейство фуллеренов (низкие фуллерены — C24, C28, C30, C32, — средние фуллерены — C50, C60, C70, — гиперфуллерены — C76, C78, C82, C84, C90, C96, C102, C106, C110 и фуллерены-гиганты — C240, C540, C960), нанотрубки (одностенные и многостенные), а также аморфную форму углерода — стеклообразное, не имеющее упорядоченной кристаллической решетки вещество.

Но, похоже, полиморфизм углерода себя еще не исчерпал. Эксперименты, проведенные различными группами ученых, показали, что графит, находящийся при комнатной температуре, под давлением выше 14 ГПа — при так называемом холодном сжатии — испытывает необычный структурный переход, сопровождающийся изменением электрического сопротивления, оптических свойств и твердости. О том, что происходит внутренняя перестройка структуры графита, говорят также и данные рентгеноструктурного анализа. Высказывались предположения, что это может быть некая промежуточная фаза между алмазом и графитом (лонсдейлит) или даже аморфный углерод (рис. 2). Однако рамановская спектроскопия и дифракционное рассеяние рентгеновских лучей вскоре опровергли эти гипотезы. И лишь после этого ученые стали говорить о возможности существования новой разновидности углерода. Необходимо было только выяснить, устойчива ли данная аллотропная модификация, какова ее кристаллическая структура, механические свойства и т. п.

Американо-российско-китайская группа ученых (Россию представлял Артем Оганов с геологического факультета МГУ) опубликовала в журнале Physical Review Letters работу Superhard Monoclinic Polymorph of Carbon (полный текст — PDF), в которой теоретическим путем было подтверждено существование еще одной аллотропной модификации углерода. Ученые назвали ее M-углерод.

Рис. 2. Фазовая диаграмма («температура—давление») углерода. Синими точечными линиями показана область неопознанной, предположительно метастабильной аллотропной модификации углерода, позднее идентифицированной как стабильный M-углерод. Рис. из презентации Венди Мао (Wendy Mao)
Рис. 2. Фазовая диаграмма («температура—давление») углерода. Синими точечными линиями показана область неопознанной, предположительно метастабильной аллотропной модификации углерода, позднее идентифицированной как стабильный M-углерод. Рис. из презентации Венди Мао (Wendy Mao)

В ходе вычислений выяснилось, что M-углерод имеет моноклинную структуру кристаллической решетки (рис. 3) и обладает твердостью почти как у алмаза. Результаты расчетов хорошо согласуются с экспериментальными данными. На основании этого авторы работы смогли идентифицировать упомянутое выше неопознанное состояние углерода как его совершенно новую аллотропную форму.

Рис. 3. Кристаллическая структура M-углерода с разных ракурсов. Черные и серые шарики показывают искривленные слои кристаллической решетки M-углерода. Рис. из обсуждаемой статьи в Phys. Rev. Lett.
Рис. 3. Кристаллическая структура M-углерода с разных ракурсов. Черные и серые шарики показывают искривленные слои кристаллической решетки M-углерода. Рис. из обсуждаемой статьи в Phys. Rev. Lett.

Если сравнивать M-углерод с остальными сверхтвердыми материалами, то по твердости он находится между двумя самыми твердыми материалами (без учета лонсдейлита): кубическим нитридом бора (с-BN), успешно использующимся как аналог алмазного инструмента, и собственно алмазом. В числах это выглядит так: твердость c-BN составляет 47 ГПа, M-углерода — 83,1 ГПа и алмаза — около 100 ГПа.

Кроме этого, ученые рассчитали зонную структуру M-углерода и выяснили, что, во-первых, новая разновидность углерода — это устойчивое соединение, а никак не метастабильное, как изначально предполагали некоторые исследователи, а во-вторых, M-углерод является диэлектриком.

С практической точки зрения выгоды очевидны. С помощью холодного сжатия (не доводя температуру до тысяч градусов, как в случае с трансформацией графита в алмаз) можно получить вещество, практически не уступающее по твердости алмазу и превосходящее используемый в промышленных целях кубический нитрид бора.

Источник: Quan Li, Yanming Ma, Artem R. Oganov, Hongbo Wang, Hui Wang, Ying Xu, Tian Cui, Ho-Kwang Mao, Guangtian Zou. Superhard Monoclinic Polymorph of Carbon // Physical Review Letters 102, 175506 (2009).

Юрий Ерин


Комментарии (1)



Последние новости: ФизикаКристаллографияГеологияМинералогияЮрий Ерин

12.05
Атмосферное давление на древней Земле было в два раза ниже современного
11.05
Аномалия в распадах B-мезонов подтверждается еще в одном эксперименте
10.05
ATLAS обновил данные по топ-антитоп-хиггс отклонению
9.05
Коллайдер набирает обороты
1.05
Поломка трансформатора на неделю задерживает работу коллайдера
27.04
Теоретики продолжают искать объяснения двухфотонному пику
26.04
ATLAS не проясняет ситуацию с распадом B-мезона на мюоны
25.04
CMS выложил в свободный доступ 300 ТБ своих данных
12.04
Коллайдер не видит «двуххиггсовских» тяжелых резонансов
11.04
Коллайдер ищет невидимые частицы в данных Run 2


Новости науки по темам: антропология, археология, астрономическая научная картинка дня, астрономия, биология, биотехнологии, генетика, геология, затмения, информационные технологии, космос, лингвистика, математика, медицина, нанотехнологии, наука в России, наука и общество, Нобелевские премии, палеонтология, Первое апреля, психология, технологии, физика, химия, эволюция, экология, энергетика, этология

Новости науки по авторам: Валентин Анаников, Дарья Баранова, Вера Башмакова, Александр Бердичевский, Максим Борисов, Варвара Веденина, Александр Венедюхин, Михаил Волович, Михаил Гарбузов, Алексей Гиляров, Дмитрий Гиляров, Сергей Глаголев, Евгений Гордеев, Николай Горностаев, Владимир Гриньков, Дмитрий Дагаев, Юрий Ерин, Анастасия Еськова, Дмитрий Жарков, Андрей Журавлёв, Дмитрий Замолодчиков, Игорь Иванов, Вячеслав Калинин, Павел Квартальнов, Мария Кирсанова, Дмитрий Кирюхин, Александр Козловский, Юлия Кондратенко, Артем Коржиманов, Ольга Кочина, Виталий Кушниров, Иван Лаврёнов, Алексей Левин, Андрей Логинов, Сергей Лысенков, Лейла Мамирова, Александр Марков, Мария Медникова, Вадим Мокиевский, Григорий Молев, Тарас Молотилин, Марат Мусин, Максим Нагорных, Елена Наймарк, Алексей Опаев, Петр Петров, Александр Пиперски, Константин Попадьин, Сергей Попов, Роман Ракитов, Татьяна Романовская, Александр Самардак, Александр Сергеев, Андрей Сидоренко, Виктория Скобеева, Даниил Смирнов, Дарья Спасская, Любовь Стрельникова, Алексей Тимошенко, Александр Токарев, Мария Шнырёва, Сергей Ястребов, Светлана Ястребова

Новости науки по месяцам: 2016 V, IV, III, II, I  2015 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2014 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2013 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2012 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2011 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2010 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2009 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2008 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2007 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2006 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2005 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I 

Новости науки почтой (рассылка на Subscribe.ru):

 


Где еще почитать научные новости: «Биомолекула», «Вокруг света», Газета.ру. Наука, «Наука и жизнь», Наука и технологии РФ, «Научная Россия», «Популярная механика», РИА Наука, «Чердак», N+1, Naked Science

 


при поддержке фонда Дмитрия Зимина - Династия