Элементы Элементы большой науки

Поставить закладку

Напишите нам

Карта сайта

Содержание
Энциклопедия
Новости науки
LHC
Картинка дня
Библиотека
Видеотека
Книжный клуб
Задачи
Масштабы: времена
Детские вопросы
Плакаты
Научный календарь
Наука и право
ЖОБ
Наука в Рунете

Поиск

Подпишитесь на «Элементы»



ВКонтакте
в Твиттере
в Фейсбуке
на Youtube
в Instagram



Библиотека

 
Р. Найт
«Смотри, что у тебя внутри». Глава из книги


К. Циммер
«Микрокосм». Глава из книги


Н. Резник
Как черепахи нарыли себе панцирь


Интервью с Б. Янишем
Наследники Поппера


А. Гуков
Крупные животные Арктики: сколько их осталось?


А. Огнёв
Откуда жизнь? Еще теплее!


Р. Докинз
«Эгоистичный ген». Глава из книги


А. Бердников
Вдоль по лунной дорожке


В. Бабицкая, С. Горбунов
Как и зачем птицы общаются с охотниками за медом


Е. Чернова
Хаос и порядок: фрактальный мир







Главная / Новости науки версия для печати

Разработана неинвазивная методика измерения pH в живом организме


ЯМР-спектр 13С в опухолевой ткани. Благодаря химическому сдвигу четко разделены пики, отвечающие углероду в составе иона HCO3– и молекулы CO2. По относительной силе этих пиков можно определить pH ткани. Изображение из обсуждаемой статьи в Nature
ЯМР-спектр 13С в опухолевой ткани. Благодаря химическому сдвигу четко разделены пики, отвечающие углероду в составе иона HCO3 и молекулы CO2. По относительной силе этих пиков можно определить pH ткани. Изображение из обсуждаемой статьи в Nature

Английские и шведские исследователи разработали безвредную методику измерения водородного показателя pH внутри живого организма на основе магнитно-резонансной спектроскопии. Она пригодится для диагностики новообразований, воспалений и других патологий.

Физические методы исследований в биомедицинской науке сильно отличаются от инструментария других разделов прикладной физики. С одной стороны, процессы, протекающие в живом организме, очень многофакторны, и поэтому их можно пытаться изучать самыми разными физическими методами. Но с другой стороны, для того, чтобы не нарушать сами эти процессы, приходится искать неинвазивные (то есть «невмешивающиеся») методы исследования.

Конечно, на сегодня таких методов уже наработано немало, но тем не менее многого в диагностическом арсенале врачей пока не хватает. Например, до сих пор отсутствовала удобная неинвазивная методика определения pH — величины, показывающей кислотно-щелочной баланс в той или иной ткани. На днях этот пробел был восполнен: в статье, опубликованной в журнале Nature, рассказывается о разработке и успешном применении быстрой и точной методики измерения pH с помощью магнитно-резонансной томографии.

Напомним, что в нейтральной водной среде часть молекул воды H2O диссоциирует на ионы H+ и OH, которых там поровну. В кислотной среде ионы H+ преобладают над OH, а в щелочной среде, наоборот, баланс смещается в сторону OH. Значение pH жидкости выражает концентрацию ионов H+ и показывает, к чему ближе исследуемая жидкость — к кислотам или к щелочам.

Правильная концентрация ионов в различных физиологических жидкостях очень важна для нормальной жизнедеятельности. Поэтому в норме pH должен иметь определенное, правда тканеспецифическое, значение. При патологии pH может смещаться, и иногда именно это смещение оказывается удобным для диагностики ранним индикатором изменений, начинающихся в тканях. Уже установлено, что воспалительные процессы, образование опухолей, ишемическая болезнь сердца, легочные заболевания и некоторые другие патологии сопровождаются смещением кислотно-щелочного баланса в ткани.

На роль неинвазивной методики измерения pH в глубоко лежащих тканях уже давно напрашивалась магнитно-резонансная томография. Однако на пути к реализации этой идеи лежало немало трудностей, которые были преодолены только сейчас.

Вообще, явление ядерного магнитного резонанса (ЯМР) состоит в том, что находящиеся в магнитном поле атомные ядра с ненулевым спином способны поглощать радиоволны строго определенной, резонансной, частоты. Можно создать такое магнитное поле, чтобы «резонировал» не весь исследуемый образец, а только маленькая область внутри него, а затем, меняя поле, можно последовательно просканировать весь образец и по интенсивности поглощения радиоволн выяснить, как «настроенный на резонанс» химический элемент распределен внутри образца.

ЯМР-спектроскопия обладает очень ценным свойством — она позволяет не только обнаружить присутствие элемента, но и узнать, в каком химическом окружении он находится. Дело в том, что электронная оболочка слегка уменьшает «кажущееся» магнитное поле для ядра. Возникающее из-за этого смещение резонансной частоты ядра внутри атома или иона по сравнению с резонансной частотой «голого» ядра называется химическим сдвигом. Поскольку в разных молекулах электронная структура разная, то и вызванный ею химический сдвиг тоже отличается. В результате один и тот же элемент может дать на ЯМР-спектре сразу несколько пиков при разных резонансных частотах, отвечающих разным химическим сдвигам.

В принципе, этого достаточно для определения pH вещества. Например, с помощью протонного ЯМР можно напрямую определить соотношение между ионами H+ и OH и вычислить pH. Однако подобные методы, опирающиеся на традиционный ЯМР, работают только «в принципе» — они обладают слишком слабой чувствительностью для реальных задач и не позволяют измерить pH с хорошей точностью и с требуемым пространственным разрешением.

Выход из этой ситуации нашла недавно группа исследователей из Кембриджа и Амершема (Англия), а также Мальмё (Швеция); в их статье описывается новая методика и результаты ее успешного применения на мышах.

В этой методике для измерения pH используется ЯМР-сигнал от ядер углерода-13, входящих в состав молекул CO2 и ионов HCO3. Благодаря разному химическому сдвигу эти сигналы четко разделены на ЯМР-спектре (см. рис. 1), и, сравнивая эти два пика, можно определить pH исследуемой ткани.

Правда, из-за слишком малой природной концентрации изотопа 13С и его слабой поляризуемости такой четкий сигнал, как на рис. 1, просто так не получишь. Для этого экспериментаторы воспользовались специальной методикой предварительной поляризации ядер 13С, разработанной ими же два года назад. Небольшой объем жидкости с растворенным в ней углекислым газом, обогащенным углеродом-13, охлаждался до температуры около 1 кельвина, потом с помощью микроволнового излучения поляризация электронных оболочек передавалась ядрам углерода, а затем образец вновь разогревался до температуры тела. Такая гиперполяризованная (но совершенно безвредная для организма) жидкость вводилась подкожно или внутривенно, проникала в ткани, и затем снимался обычный ЯМР-спектр. Правда, все эти операции требовалось делать быстро, в течение десятка секунд, иначе углерод-13 терял свою поляризацию и ЯМР-сигнал пропадал.

Слева: Протонное ЯМР-изображение поперечного сечения мыши с имплантированной опухолью (опухоль обведена красной линией). Справа: карта pH, полученная описанным методом. Изображение из обсуждаемой статьи в Nature
Слева: Протонное ЯМР-изображение поперечного сечения мыши с имплантированной опухолью (опухоль обведена красной линией). Справа: карта pH, полученная описанным методом. Изображение из обсуждаемой статьи в Nature

Описав в своей статье эту методику и методы ее калибровки, авторы затем предъявили результаты эксперимента по определению pH в живой мыши. Ей имплантировали в тело опухоль, затем ввели подкожно жидкость с гиперполяризованным CO2 и с помощью описанной методики построили распределение pH внутри организма (см. рис. 2). На рисунке видно, что внутри опухоли (ее контур показан красной линией) pH-баланс сдвинут в сторону чуть более кислой среды, как и ожидалось для опухолевой ткани. Это показывает, что методика работает, и, поскольку в ней используется совершенно безвредный для организма раствор, она уже готова к клиническому применению и на человеке.

Источник: F. A. Gallagher et al. Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate // Nature. Advance online publication 28 May 2008 (doi:10.1038/nature07017).

См. также:
Новый вид магнитно-резонансной томографии помогает изучить процесс дыхания, «Элементы», 02.08.2007 — другой пример медицинского использования ЯМР на гиперполяризованных ядрах.

Игорь Иванов


Комментарии (1)



Последние новости: ФизикаМедицинаХимияИгорь Иванов

26.09
Асимметрия между материей и антиматерией впервые обнаружена в распадах барионов
23.09
Впервые получены структуры контактной и сольватноразделённой ионных пар силенил-литиевого соединения
23.09
LHCb открыл рекордно редкий адронный распад B-мезонов
22.09
Темп рождения прелестных адронов растет с энергией не так, как предсказывала теория
14.09
CMS выпустила статью про поиск двухфотонных резонансов
13.09
Отклонение, напоминавшее заряженный бозон Хиггса, исчезло
12.09
Коллайдер выполнил техническую программу-минимум на этот год
1.09
Т-клетки здоровых людей научили распознавать чужой рак
22.08
Наконец-то обнаружен аналог излучения Хокинга в холодном квантовом газе
21.08
ICHEP 2016: Тяжелых экзотических частиц по-прежнему не видно

Научная картинка дня


Новости науки по темам: антропология, археология, астрономическая научная картинка дня, астрономия, биология, биотехнологии, генетика, геология, затмения, информационные технологии, космос, лингвистика, математика, медицина, нанотехнологии, наука в России, наука и общество, Нобелевские премии, палеонтология, Первое апреля, психология, технологии, физика, химия, эволюция, экология, энергетика, этология

Новости науки по авторам: Валентин Анаников, Дарья Баранова, Вера Башмакова, Александр Бердичевский, Максим Борисов, Варвара Веденина, Александр Венедюхин, Михаил Волович, Михаил Гарбузов, Алексей Гиляров, Дмитрий Гиляров, Сергей Глаголев, Евгений Гордеев, Николай Горностаев, Владимир Гриньков, Дмитрий Дагаев, Юрий Ерин, Анастасия Еськова, Дмитрий Жарков, Андрей Журавлёв, Дмитрий Замолодчиков, Игорь Иванов, Вячеслав Калинин, Павел Квартальнов, Мария Кирсанова, Дмитрий Кирюхин, Александр Козловский, Юлия Кондратенко, Артем Коржиманов, Ольга Кочина, Аркадий Курамшин, Виталий Кушниров, Иван Лаврёнов, Алексей Левин, Андрей Логинов, Сергей Лысенков, Лейла Мамирова, Александр Марков, Мария Медникова, Вадим Мокиевский, Григорий Молев, Тарас Молотилин, Антон Морковин, Марат Мусин, Максим Нагорных, Елена Наймарк, Алексей Опаев, Петр Петров, Александр Пиперски, Константин Попадьин, Сергей Попов, Роман Ракитов, Татьяна Романовская, Александр Самардак, Александр Сергеев, Андрей Сидоренко, Виктория Скобеева, Даниил Смирнов, Павел Смирнов, Дарья Спасская, Любовь Стрельникова, Дмитрий Сутормин, Алексей Тимошенко, Александр Токарев, Александр Храмов, Мария Шнырёва, Сергей Ястребов, Светлана Ястребова

Новости науки по месяцам: 2016 IX, VIII, VII, VI, V, IV, III, II, I  2015 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2014 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2013 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2012 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2011 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2010 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2009 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2008 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2007 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2006 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2005 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I 

Новости науки почтой (рассылка на Subscribe.ru):

 


Где еще почитать научные новости: «Биомолекула», «Вокруг света», Газета.ру. Наука, «Наука и жизнь», Наука и технологии РФ, «Научная Россия», «Популярная механика», РИА Наука, «Чердак», N+1, Naked Science

 


при поддержке фонда Дмитрия Зимина - Династия