Элементы Элементы большой науки

Поставить закладку

Напишите нам

Карта сайта

Содержание
Энциклопедия
Новости науки
LHC
Картинка дня
Библиотека
Видеотека
Книжный клуб
Задачи
Масштабы: времена
Детские вопросы
Плакаты
Научный календарь
Наука и право
ЖОБ
Наука в Рунете

Поиск

Подпишитесь на «Элементы»



ВКонтакте
в Твиттере
в Фейсбуке
на Youtube
в Instagram



Библиотека

 
Л. Краусс
«Страх физики». Глава из книги


Т. Пичугина
Как увидеть тень черной дыры


Интервью с В. Сурдиным
Полет на Луну — это командировка на неделю


А. Акопян
Как ищут тёмную материю


И. Акулич
Идеальный почтовый индекс


А. Бердников
Интерференция в домашних условиях. Плёнки и антиплёнки


Интервью с Л. Марголисом
Леонид Марголис: «Мне всегда было интересно, как клетки разговаривают друг с другом»


А. Иванов
Сибирь и Северная Америка были единым целым более миллиарда лет назад


П. Амнуэль
Одиночество во Вселенной


Р. Фишман
Детективы каменного века







Главная / Новости науки версия для печати

Куда уходит фосфор


Флуоресцентная рентгеновская микрофотография и флуоресцентный спектр осадка из богатых фосфором районов Британской Колумбии. Осадочный фосфор (красный) виден в виде четких, неоднородно распределенных частиц субмикронного размера на фоне сравнительно однородного осадочного алюминия (синий) и магния (зеленый). На основании характеристик рентгеновской спектроскопии высокого разрешения около половины проб, взятых из исследованных 147 богатых фосфором районов, оказались содержащими полифосфаты, а другая половина — апатиты. Изображение из обсуждаемой статьи в Science
Флуоресцентная рентгеновская микрофотография и флуоресцентный спектр осадка из богатых фосфором районов Британской Колумбии. Осадочный фосфор (красный) виден в виде четких, неоднородно распределенных частиц субмикронного размера на фоне сравнительно однородного осадочного алюминия (синий) и магния (зеленый). На основании характеристик рентгеновской спектроскопии высокого разрешения около половины проб, взятых из исследованных 147 богатых фосфором районов, оказались содержащими полифосфаты, а другая половина — апатиты. Изображение из обсуждаемой статьи в Science

Американские ученые, определив качественный и количественный состав фосфорных компонентов морского осадка и планктона, выяснили механизмы осаждения фосфора в природных условиях. Они показали, что фосфор — важнейший элемент жизни — выводится из обращения при участии микроорганизмов. Таким образом, подтвердилась гипотеза о биогенном формировании фосфоритовых месторождений.

Фосфор — один из важнейших «элементов жизни». Вместе с серой, железом и калием его присутствие предопределяет возможность обитания в тех или иных местах живых организмов. Если фосфора в среде мало, то никакой организм расти не сможет; ограничение по фосфору снижает первичную продукцию (см. также Primary production), что означает уменьшение биомассы для всей трофической цепи. Для понимания продукционной возможности среды следует хорошо представлять себе в том числе и фосфорный дебет и кредит, то есть то, как устроен круговорот фосфора в конкретной обстановке. Фосфор поступает в окружающую среду из земных недр с подземными флюидами и вулканической деятельностью. Далее в форме фосфатов (производных фосфорной кислоты) он утилизируется живыми организмами. Фосфор отмершего органического вещества может возвратиться в круговорот, но в конце концов трансформируется в нерастворимый фосфатный осадок. Состав осадков — нерастворимые соли кальция и марганца (апатиты). И можно даже уже не упоминать, что апатиты — это важнейшие полезные ископаемые, обеспечивающие сырьем химическую промышленность и сельское хозяйство.

Развитие биоты в том или ином месте зависит от соотношения скоростей поступления фосфора и его осаждения. Оценить объемы поступления фосфора относительно просто — это поверхностный сток и подземные флюиды. А вот для оценки темпов осаждения фосфора хорошо бы знать участников этого процесса и механизмы осаждения. Нужно подчеркнуть, что, как это ни удивительно, до настоящего времени нет определенного представления о том, как происходит осаждение фосфатов в природе. Теоретически, в природных условиях — при естественном соотношении ионов, анионов, кислотности — осаждения фосфора происходить не должно. Однако очевидно, что оно происходит — но как?

Группа американских ученых из Технологического института Джорджии в Атланте, Университета Южной Каролины в Колумбии, Аргоннской национальной лаборатории (штат Иллинойс) и Океанографического института Скидуэя в Саванне (штат Джорджия) с помощью новейших технологий проследила путь фосфора от поверхности воды до осадка в естественной морской обстановке. На этом пути ученые отметили, как меняется количество фосфора и состав фосфорных соединений и таким образом выявили ключевые точки трансформации фосфора в природе. Методики, которые использовались в их работе, — это высокочувствительная флуоресцентная рентгенография высокого разрешения, позволяющая увидеть (действительно, увидеть в цвете!) картину распределения различных соединений фосфора, а также высокочувствительный электродиализ по фосфору, с помощью которого можно точно оценить количество того или иного фосфорного соединения.

Работа проводилась в канадской провинции Британская Колумбия в морском заливе острова Ванкувер, где были взяты пробы планктона, воды и осадка. Во время отбора проб — в апреле 2007 года — наблюдалось бурное цветение диатомовых водорослей Skeletonema. Эти одноклеточные, как и практически все микроорганизмы, накапливают внутри своих клеток гранулы полифосфатов — так называемые волютиновые гранулы. В этих гранулах скапливается до 30–40% от общего запаса фосфора клетки. Полифосфаты формируются из остатков фосфорной кислоты, которые клетка забирает из окружающей среды с затратой энергии. Клетка использует полифосфаты как запасной источник фосфора для построения энергетических молекул.

Таким образом, первая точка концентрации фосфатов — это гранулы волютина внутри клеток. Исследователи измерили количество полифосфатов в воде и внутри диатомовых водорослей и выяснили, что полифосфаты в морской воде — это в большой степени производные клеточной деятельности. Отмирая и опускаясь на дно, клетки переносят полифосфатные гранулы в осадок. Там клетки распадаются, а гранулы (или зерна) волютина субмикронного размера остаются в осадке. Их и зарегистрировали исследователи с помощью рентгеновской спектроскопии: размер полифосфатных зерен в осадке — 0,5–3 микрона, такого же размера и волютиновые гранулы в живых клетках. Так как полифосфаты очень плохо растворяются в морской воде, обратно в круговорот они уже не возвращаются. Время жизни полифосфатов в осадке, как выяснилось при изучении осадочной толщи, не менее 60 лет.

Тем не менее балансовые расчеты количества полифосфатов в воде, водорослях и на поверхности осадка показали, что некоторое количество полифосфатов всё же куда-то исчезает. Вряд ли эта недостача связана с реутилизацией их живыми клетками. Ведь живые клетки диатомовых могут утилизировать только внутриклеточный полифосфат, но не внеклеточный. Гораздо более вероятно, что полифосфаты в осадке постепенно преобразуются в апатиты. Ученым удалось зарегистрировать в осадке переходные, слабо кристаллизованные частицы апатита. Предположительно, именно гранулы полифосфатов становятся подложкой, или матрицей, на которой начинается кристаллизация апатита, постепенно в геологическом масштабе времени приводящая к образованию скоплений апатитов.

Таким образом, американским ученым удалось в природных условиях показать возможность и масштабность биогенного формирования фосфоритов, а также указать на путь, которым выводится фосфор из планетарного круговорота. По мнению американских специалистов, диатомовые водоросли концентрируют фосфор, переводят его в нерастворимую форму и переносят в осадок. Далее геохимические процессы, идущие в морской воде, постепенно приводят к формированию апатитов. Глобальность процесса подчеркивается всесветным распространением диатомовых водорослей.

Фосфориты озера Хубсугул (Монголия) сложены фоссилизированными нитями цианобактерий. Это очень серьезный довод в пользу биогенного происхождения месторождений фосфоритов. Фото публикуется с любезного разрешения к. г.-м. н. Е. А. Жегалло
Фосфориты озера Хубсугул (Монголия) сложены фоссилизированными нитями цианобактерий. Это очень серьезный довод в пользу биогенного происхождения месторождений фосфоритов. Фото публикуется с любезного разрешения к. г.-м. н. Е. А. Жегалло

Нужно, однако, заметить, что диатомовые водоросли появились в ископаемой летописи только в раннем мелу. При этом известны гораздо более древние фосфоритовые месторождения и отложения, например раннекембрийские (540 млн лет) месторождения фосфоритов в озере Хубсугул в Монголии. А ведь диатомей тогда еще не было!

Как следует из списка литературы в конце публикации в Science, специалисты из США незнакомы с исследованиями российских микробиологов, изучавших механизмы биогенного осаждения фосфатов еще 10–15 лет назад. Ученые из институтов микробиологии РАН и палеонтологии РАН в ряде публикаций изложили описанный выше механизм осаждения фосфора при помощи концентрации полифосфата в волютиновых гранулах, но только при участии не диатомей, а цианобактерий. Отличие нового американского исследования от российских состоит в том, что первые изучали свой объект в природе, а вторые — в лабораторных экспериментах. Однако помимо лабораторных экспериментов российские специалисты представили доказательства участия цианобактерий в древнем фосфатоосаждении — это обнаружение фоссилизированных цианобактерий в толщах фосфоритовых отложений Хубсугула.

«Диатомовое» и «цианобактериальное» фосфатонакопление различается своей последней фазой: в первом случае — это медленная геохимическая трансформация полифосфатов в апатит, во втором — изменение кислотности среды и активный транспорт кальция на поверхности клеток. Но в любом случае, участие биоты в круговороте фосфора до сих пор явно недооценивали, особенно если принять во внимание исключительную древность полифосфатных реакций в живых клетках. Ведь даже у древнейших пропионовых бактерий в клетках накапливаются полифосфаты.

Источники:
1) Julia Diaz, Ellery Ingall, Claudia Benitez-Nelson, David Paterson, Martin D. de Jonge, Ian McNulty, Jay A. Brandes. Marine Polyphosphate: A Key Player in Geologic Phosphorus Sequestration // Science. 2 May 2008. V. 320. P. 652–655 [DOI: 10.1126/science.1151751] (in Reports) .
2) Л. М. Герасименко, Г. А. Заварзин, А. Ю. Розанов, Г. Т. Ушатинская. Роль цианобактерий в образовании фосфатных минералов // Журнал общей биологии. 1999. Т. 60. № 4. С.415–430.
3) I. V. Goncharova, L. M. Gerasimenko, G. A. Zavarzin, G. T. Ushatinskaya. Formation of Mineral Phosphate Microtubes in presence of halophilic cyanobacterium Microcoleus chthonoplastes // Current Microbiology. 1993. V. 27. P. 187–190.

См. также:
И. С. Кулаев. Неорганические полифосфаты и их роль на разных этапах эволюции (о роли полифосфатов у бактерий, древнейших и эволюционно продвинутых) // Соросовский журнал. 1996.

Елена Наймарк


Комментировать



Последние новости: ГеохимияЭкологияЕлена Наймарк

6.07
Метанокисляющие микроорганизмы донных осадков оказались неожиданно разнообразными
22.06
Рыбки-брызгуны хорошо различают человеческие лица
16.06
В Старом и Новом Свете птицы сходно реагируют на глобальное потепление
15.06
Получение генов пектиназ от протеобактерий резко ускорило видообразование палочников
8.06
Новые древние остатки людей с острова Флорес говорят о родстве «хоббитов» с эректусами
1.06
Половой отбор сделал сперматозоиды дрозофил самыми длинными в мире
26.05
Очертания видового ареала определяются экологическими свойствами вида
18.05
Обнаружены одноклеточные организмы с ядром, но без митохондрий
12.05
Атмосферное давление на древней Земле было в два раза ниже современного
4.05
Рост концентрации CO2 в атмосфере способствует увеличению растительного покрова

Научная картинка дня


Новости науки по темам: антропология, археология, астрономическая научная картинка дня, астрономия, биология, биотехнологии, генетика, геология, затмения, информационные технологии, космос, лингвистика, математика, медицина, нанотехнологии, наука в России, наука и общество, Нобелевские премии, палеонтология, Первое апреля, психология, технологии, физика, химия, эволюция, экология, энергетика, этология

Новости науки по авторам: Валентин Анаников, Дарья Баранова, Вера Башмакова, Александр Бердичевский, Максим Борисов, Варвара Веденина, Александр Венедюхин, Михаил Волович, Михаил Гарбузов, Алексей Гиляров, Дмитрий Гиляров, Сергей Глаголев, Евгений Гордеев, Николай Горностаев, Владимир Гриньков, Дмитрий Дагаев, Юрий Ерин, Анастасия Еськова, Дмитрий Жарков, Андрей Журавлёв, Дмитрий Замолодчиков, Игорь Иванов, Вячеслав Калинин, Павел Квартальнов, Мария Кирсанова, Дмитрий Кирюхин, Александр Козловский, Юлия Кондратенко, Артем Коржиманов, Ольга Кочина, Аркадий Курамшин, Виталий Кушниров, Иван Лаврёнов, Алексей Левин, Андрей Логинов, Сергей Лысенков, Лейла Мамирова, Александр Марков, Мария Медникова, Вадим Мокиевский, Григорий Молев, Тарас Молотилин, Антон Морковин, Марат Мусин, Максим Нагорных, Елена Наймарк, Алексей Опаев, Петр Петров, Александр Пиперски, Константин Попадьин, Сергей Попов, Роман Ракитов, Татьяна Романовская, Александр Самардак, Александр Сергеев, Андрей Сидоренко, Виктория Скобеева, Даниил Смирнов, Павел Смирнов, Дарья Спасская, Любовь Стрельникова, Алексей Тимошенко, Александр Токарев, Александр Храмов, Мария Шнырёва, Сергей Ястребов, Светлана Ястребова

Новости науки по месяцам: 2016 VII, VI, V, IV, III, II, I  2015 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2014 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2013 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2012 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2011 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2010 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2009 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2008 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2007 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2006 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2005 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I 

Новости науки почтой (рассылка на Subscribe.ru):

 


Где еще почитать научные новости: «Биомолекула», «Вокруг света», Газета.ру. Наука, «Наука и жизнь», Наука и технологии РФ, «Научная Россия», «Популярная механика», РИА Наука, «Чердак», N+1, Naked Science

 


при поддержке фонда Дмитрия Зимина - Династия