Элементы Элементы большой науки

Поставить закладку

Напишите нам

Карта сайта

Содержание
Энциклопедия
Новости науки
LHC
Картинка дня
Библиотека
Видеотека
Книжный клуб
Задачи
Масштабы: времена
Детские вопросы
Плакаты
Научный календарь
Наука и право
ЖОБ
Наука в Рунете

Поиск

Подпишитесь на «Элементы»



ВКонтакте
в Твиттере
в Фейсбуке
на Youtube
в Instagram



Библиотека

 
Ли Биллингс
«5 000 000 000 лет одиночества». Глава из книги


А. Панчин
«Сумма биотехнологии». Глава из книги


И. Левонтина
«О чем речь». Главы из книги


Ч. Уилан
«Голая статистика». Главы из книги


Интервью М. Гельфанда с С. Шлосманом
«Замечательная статья» значит только то, что она содержит замечательный результат


П. Лекутер, Д. Берресон
«Пуговицы Наполеона». Глава из книги


Д. Вибе
Телескопы с жидкими линзами: как это работает


А. Паевский
Ближайший космос. Быстрее. Лучше. Дешевле


Р. Фишман
Прионы: смертоносные молекулы-зомби


Д. Мамонтов
Торий: спасет ли он планету от энергетического кризиса?







Главная / Новости науки версия для печати

Стабилизирующий отбор у млекопитающих справляется с мутациями в митохондриях всего за два поколения


Митохондрии — энергетические станции клетки. Они имеют собственный набор генов, в которых записана информация о ферментах, участвующих в клеточном дыхании. Значимые мутации в митохондриальных генах могут привести к гибели клеток и организма. Но клетка каким-то образом освобождается от мутантных митохондрий. Рисунок с сайта www.ndpteachers.org
Митохондрии — энергетические станции клетки. Они имеют собственный набор генов, в которых записана информация о ферментах, участвующих в клеточном дыхании. Значимые мутации в митохондриальных генах могут привести к гибели клеток и организма. Но клетка каким-то образом освобождается от мутантных митохондрий. Рисунок с сайта www.ndpteachers.org

Ученым удалось проследить процесс отбора митохондрий в клетках мышей. Выяснилось, что организм высшего животного способен чрезвычайно эффективно избавляться от мутантных митохондрий: они исчезают уже через 2–6 поколений. Эти данные говорят о том, что отбор нормальных митохондрий происходит не путем элиминации целых организмов с пониженной приспособленностью, а на уровне ооцитов (женских половых клеток) или на субклеточном уровне. Вероятнее всего, механизм стабилизирующего отбора митохондрий происходит на уровне взаимодействия компонентов эукариотической клетки. При этом темпы стабилизирующего отбора генов тРНК митохондрий и генов, кодирующих белки, оказалась различными. Предполагается также различный механизм стабилизирующего отбора для генов белков и тРНК.

Сейчас уже стала общепринятой гипотеза о происхождении эукариотической клетки в результате симбиоза прокариотических клеток нескольких типов, которой 40 лет назад шокировала научную общественность Линн Маргулис (Lynn Margulis). Биологи теперь задают вопросы не о вероятности этой гипотезы, а о путях эволюции отдельных компонентов этой симбиотической системы.

Наиболее вероятным предком митохондрий на сегодняшний день считаются свободноживущие протеобактерии. После слияния с клеткой-хозяином протеобактерии взяли на себя функции энергоснабжения клетки, а другие функции оставили другим клеточным элементам. В результате митохондрии отказались от рекомбинации (обмена генами с себе подобными), оставив себе сильно урезанный геном. Наибольшему сокращению подвергся митохондриальный геном у животных. В нем содержится только информация о некоторых ферментах, обслуживающих окислительное фосфорилирование (клеточное дыхание), а также гены некоторых функциональных РНК (транспортных, рибосомальных).

Понятно, что от правильной работы генов митохондрий зависит жизнеспособность клетки. Стоит одному из ферментов приобрести вредную мутацию, как энергоснабжение клетки нарушится. У митохондрий, лишенных спасительной рекомбинации, нет возможности избавиться от мутаций путем обмена генами с другими, «здоровыми» митохондриями. Можно было бы предположить, что митохондрии — чрезвычайно стабильные системы, и скорость мутирования в них крайне мала. Однако, удивительное дело, оказалось, что скорость мутирования в митохондриальном геноме даже выше, чем в ядерном. Теоретически ясно, что клетка как-то избавляется от мутантных митохондрий, каким-то образом работает стабилизирующий (очищающий) отбор, отсеивающий вредные мутации. Но как он работает?

Нужно хорошо понимать, что отбор может работать не столь прямолинейно, как это представляется в учебных схемах: появилась вредная мутация, следовательно рождается маложизнеспособная особь, она не оставляет потомства, и в результате мутация элиминируется. Таким путем высшие организмы не смогли бы освободиться от всех мутаций, массово возникающих в митохондриальных поколениях. В случае с митохондриями отбор ведется по многим иерархическим ступеням. Представим себе иерархические уровни передачи митохондрий потомству: мутация появляется в митохондриях, а в клетке много митохондрий, и не все они обязательно несут мутации; у самки много ооцитов, и не в каждом из них имеются мутантные митохондрии; и, наконец, в популяции множество самок, и не у каждой из них имеются ооциты с мутантными митохондриями.

На каждом из этих иерархических уровней может происходить отбор нормальных, жизнеспособных митохондрий. Джеймс Стюарт (James Bruce Stewart) с коллегами с факультета лабораторной медицины Каролинского института в Стокгольме (Швеция) и Лаборатории исследования митохондрий в Университете Ньюкасла (Великобритания) провели эксперимент, доказывающий, что отбор нормальных митохондрий происходит не на организменном, а на клеточном или субклеточном уровне.

Экспериментаторы работали с мышами, которые несли мутацию в гене митохондриальной ДНК-полимеразы, так называемой полимеразы γ. Гамма-полимераза отвечает за репликацию ДНК в митохондриях, и если этот белок с изъяном, то при копировании ДНК в генах митохондрий будет получаться множество ошибок. В результате функция митохондрий — клеточное дыхание — будет выполняться неэффективно. Ген гамма-полимеразы расположен не в митохондриальном геноме, а в центральном (ядерном).

В ходе эксперимента была выведена линия мышей, гомозиготных по мутации в этом гене. У таких мышек были признаки митохондриальных болезней: они раньше старились. Гомозиготных самок скрестили с нормальными самцами и получили потомство, гетерозиготное по мутации гена гамма-полимеразы (одна копия гена мутантная, другая — нормальная). Митохондрии у этих мышей содержали множество мутаций, унаследованных от матери (напомним, что митохондрии наследуются исключительно по женской линии).

Скрещивая гетерозигот друг с другом, исследователи получили второе поколение с классическим расщеплением 1:2:1 по мутации гамма-полимеразы (25% мышей с двумя нормальными копиями гена, 50% гетерозигот и 25% мышей с двумя мутантными копиями гена). Из этого поколения экспериментаторы отобрали самок, не несущих мутантного гена гамма-полимеразы, зато унаследовавших от мутантной бабушки митохондриальные ДНК с вредными мутациями.

Этих самок затем скрещивали с нормальными самцами: получили следующее поколение, затем еще одно и еще, и так получили 6 последовательных поколений. Все эти мышки несли нормальный ядерный ген, но наследовали по материнской линии испорченные митохондриальные ДНК. В каждом поколении были отсеквенированы мтДНК и подсчитано число нуклеотидных замен. Ученым важно было оценить, с какой скоростью в ряду поколений снижается количество мутантных митохондриальных генов. Для этого использовали стандартный показатель соотношения значимых и незначимых нуклеотидных замен и выяснили, насколько это соотношение отличается от случайного. (Здесь я уточню, что значимыми считаются те нуклеотидные замены, которые ведут к замене аминокислоты в кодируемом белке. По соотношению значимых и незначимых замен можно судить об эффективности очищающего отбора, который должен отбраковывать значимые замены и не обращать внимания на незначимые.)

Выяснилось, что к шестому поколению мышей мутантных митохондрий со значимыми заменами почти не осталось. Иными словами, отбор митохондрий на соответствие высокому энергетическому стандарту происходит очень быстро. И ведется он, судя по скорости исчезновения вредных мутаций, не по признаку приспособленности целого организма, а на более низких уровнях организации — на субклеточном уровне или на уровне ооцитов. То есть организм каким-то образом очень быстро справляется с ошибками в размножении митохондрий, выдавая в конечном итоге освобожденные от мутаций поколения митохондрий.

В работе не показан механизм этой очистки, но зато ясно продемонстрировано явление иерархичности отбора. Это явление важно и с теоретической, и с практической позиций. Разработка модели иерархического отбора важна для понимания эволюции симбиотических организмов, а в мире, как теперь становится ясно, очень мало организмов, не имеющих симбионтов. Между тем классические модели отбора эксплуатируют характеристики приспособленности целого организма, то есть учитывают только один иерархический уровень.

С практической точки зрения понимание того, как происходит избавление от мутантных митохондриальных генов, должно помочь в поиске способов лечения митохондриальных болезней. У человека, так же как и у мышей, около 58% митохондриальных болезней вызваны мутациями в митохондриальных генах, кодирующих транспортные РНК (тРНК). При этом, чтобы проявилась болезнь, уровень мутантных митохондрий должен стать довольно высоким. Проведенный эксперимент показал, что механизм очищающего отбора, по-видимому, работает по-разному для генов белков и тРНК. Нужно подчеркнуть, что в эксперименте уровень мутаций в генах тРНК остался высоким, то есть быстрый и эффективный очищающий отбор работал только для генов, кодирующих белки. В чём здесь разница? Почему отбор перестает работать, когда дело касается тРНК?

Замечу, что по этой тематике в Москве, в Институте проблем передачи информации РАН и МГУ ведутся чрезвычайно интересные проекты. В частности, московским биологам под руководством М. С. Гельфанда удалось сравнить эффективность избавления от мутаций у митохондрий и протеобактерий, предки которых стали некогда симбионтами-митохондриями. Они пришли к неожиданному заключению, что у митохондрий, несмотря на полное отсутствие рекомбинации и сравнительно низкую численность «популяций», эффективность элиминации мутаций чрезвычайно высока, гораздо выше, чем у свободноживущих аналогов или у облигатных паразитических протеобактерий. Видимо, дело тут в каких-то взаимодействиях в пределах эукариотической клетки. В общем, исследователям еще предстоит большая работа и новые открытия.

Источники:
1) James Bruce Stewart, Christoph Freyer, Joanna L. Elson, Anna Wredenberg, Zekiye Cansu, Aleksandra Trifunovic, Nils-Göran Larsson. Strong Purifying Selection in Transmission of Mammalian Mitochondrial DNA // PLoS Biology 6(1): e10 doi:10.1371/journal.pbio.0060010.
2) David M. Rand. Mitigating Mutational Meltdown in Mammalian Mitochondria // PLoS Biology 6(2): e35 doi:10.1371/journal.pbio.0060035 — полупопулярное изложение статьи Стюарта с коллегами с кое-какими частными обобщениями.

См. также:
Leila Mamirova, Konstantin Popadin, Mikhail S. Gelfand. Purifying selection in mitochondria, free-living and obligate intracellular proteobacteria // BMC Evolutionary Biology. 2007. V. 7, №17, 12 p. (doi:10.1186/1471-2148-7-17) — в этой статье сравнивается уровень стабилизирующего отбора у протеобактерий из различных экологических групп; митохондрии рассматриваются в качестве одной из групп внутриклеточных симбионтов.

Елена Наймарк


Комментарии (2)



Последние новости: ГенетикаЭволюцияЕлена Наймарк

22.06
Рыбки-брызгуны хорошо различают человеческие лица
21.06
Кишечная бактерия влияет на социальное поведение мышей
15.06
Получение генов пектиназ от протеобактерий резко ускорило видообразование палочников
14.06
Полиплоидность предков эукариот — ключ к пониманию происхождения митоза и мейоза
10.06
Удалось выяснить, почему рак может уснуть и проснуться через много лет
8.06
Новые древние остатки людей с острова Флорес говорят о родстве «хоббитов» с эректусами
7.06
Индийская община Бней-Исраэль не может быть одним из десяти потерянных колен
6.06
Промышленный меланизм бабочек получил генетическое объяснение
2.06
Обнаружено фундаментальное сходство между развитием актинии и развитием позвоночных
1.06
Половой отбор сделал сперматозоиды дрозофил самыми длинными в мире

Научная картинка дня


Новости науки по темам: антропология, археология, астрономическая научная картинка дня, астрономия, биология, биотехнологии, генетика, геология, затмения, информационные технологии, космос, лингвистика, математика, медицина, нанотехнологии, наука в России, наука и общество, Нобелевские премии, палеонтология, Первое апреля, психология, технологии, физика, химия, эволюция, экология, энергетика, этология

Новости науки по авторам: Валентин Анаников, Дарья Баранова, Вера Башмакова, Александр Бердичевский, Максим Борисов, Варвара Веденина, Александр Венедюхин, Михаил Волович, Михаил Гарбузов, Алексей Гиляров, Дмитрий Гиляров, Сергей Глаголев, Евгений Гордеев, Николай Горностаев, Владимир Гриньков, Дмитрий Дагаев, Юрий Ерин, Анастасия Еськова, Дмитрий Жарков, Андрей Журавлёв, Дмитрий Замолодчиков, Игорь Иванов, Вячеслав Калинин, Павел Квартальнов, Мария Кирсанова, Дмитрий Кирюхин, Александр Козловский, Юлия Кондратенко, Артем Коржиманов, Ольга Кочина, Виталий Кушниров, Иван Лаврёнов, Алексей Левин, Андрей Логинов, Сергей Лысенков, Лейла Мамирова, Александр Марков, Мария Медникова, Вадим Мокиевский, Григорий Молев, Тарас Молотилин, Марат Мусин, Максим Нагорных, Елена Наймарк, Алексей Опаев, Петр Петров, Александр Пиперски, Константин Попадьин, Сергей Попов, Роман Ракитов, Татьяна Романовская, Александр Самардак, Александр Сергеев, Андрей Сидоренко, Виктория Скобеева, Даниил Смирнов, Дарья Спасская, Любовь Стрельникова, Алексей Тимошенко, Александр Токарев, Мария Шнырёва, Сергей Ястребов, Светлана Ястребова

Новости науки по месяцам: 2016 VI, V, IV, III, II, I  2015 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2014 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2013 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2012 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2011 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2010 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2009 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2008 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2007 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2006 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2005 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I 

Новости науки почтой (рассылка на Subscribe.ru):

 


Где еще почитать научные новости: «Биомолекула», «Вокруг света», Газета.ру. Наука, «Наука и жизнь», Наука и технологии РФ, «Научная Россия», «Популярная механика», РИА Наука, «Чердак», N+1, Naked Science

 


при поддержке фонда Дмитрия Зимина - Династия