Элементы Элементы большой науки

Поставить закладку

Напишите нам

Карта сайта

Содержание
Энциклопедия
Новости науки
LHC
Картинка дня
Библиотека
Видеотека
Книжный клуб
Задачи
Масштабы: времена
Детские вопросы
Плакаты
Научный календарь
Наука и право
ЖОБ
Наука в Рунете

Поиск

Подпишитесь на «Элементы»



ВКонтакте
в Твиттере
в Фейсбуке
на Youtube
в Instagram



Библиотека

 
С. Петранек
«Как мы будем жить на Марсе». Глава из книги


М. Кронгауз
«Русский язык на грани нервного срыва. 3D». Главы из книги


Р. Фишман
Генри Сегерман и его математические этюды


Б. Штерн
Ближайшие пригодные для жизни экзопланеты: где они, как их можно наблюдать и как их достичь


Р. Фишман
Истории мутантов: гомеозисные гены


С. Мац
Искривленное зеркало


Л. Полищук
Почему вымерли мамонты и гибнут сайгаки: история о вкладах


В. Кузык
Нос на батарейках


Д. Мамонтов
Взглянуть инопланетянам в глаза


А. Бердников
Машинная точность







Главная / Новости науки версия для печати

Тараканы приняли роботов в свой коллектив с правом решающего голоса


Так проводился эксперимент. Тараканов (Periplaneta americana) вместе с роботами сажали в освещенный тазик с двумя пластиковыми «укрытиями», которые могли давать больше или меньше тени в зависимости от числа слоев красной пленки. Тараканы и роботы в конечном итоге собирались все вместе под одним из полупрозрачных кружков. Фото из обсуждаемой статьи в Science
Так проводился эксперимент. Тараканов (Periplaneta americana) вместе с роботами сажали в освещенный тазик с двумя пластиковыми «укрытиями», которые могли давать больше или меньше тени в зависимости от числа слоев красной пленки. Тараканы и роботы в конечном итоге собирались все вместе под одним из полупрозрачных кружков. Фото из обсуждаемой статьи в Science

Ученые из Швейцарии, Бельгии и Франции изготовили маленьких роботов-тараканов, способных «общаться» с живыми тараканами и влиять на их поведение. Роботы пахнут по-тараканьи и адекватно реагируют на поведение своих живых товарищей. Если запрограммировать роботов на выбор худшего из двух укрытий, то группа, состоящая из 12 тараканов и 4 роботов, в итоге может вся целиком оказаться в плохом укрытии, хотя без роботов тараканы почти всегда выбирают хорошее.

Общественный образ жизни и сложное социальное поведение характерны для огромного множества живых существ — от бактерий до человека включительно. Одной из высших форм социального поведения считается коллективное принятие решений (например, когда весь коллектив должен выбрать один из двух взаимоисключающих вариантов поведения). Такая форма коллективной самоорганизации особенно распространена у членистоногих (в первую очередь, у общественных насекомых) и позвоночных.

В настоящее время специалисты по робототехнике активно используют сведения, полученные биологами при изучении поведения общественных животных, в разработке многокомпонентных самоорганизующихся систем — «коллективов» слаженно функционирующих роботов. Для самоорганизации необходимо, чтобы животные (или роботы) при принятии решения учитывали наряду с другой поступающей извне информацией также и данные о поведении товарищей.

Весьма интересным направлением исследований является создание роботов, способных «входить в доверие» к животным, внедряться в их коллективы и влиять на их поведение. Широкую известность приобрели эксперименты с роботами-пчелами, которые внесли огромный вклад в расшифровку языка пчелиных танцев (см. об этих исследованиях в статье Ж. И. Резниковой «Язык животных: подходы, результаты, перспективы...»). Впрочем, искусственные пчелы в этих экспериментах не были полноправными членами пчелиного коллектива. Они могли передавать информацию живым пчелам, но сами не реагировали на их поведение (действия робота полностью программировались человеком).

Искусственные тараканы, созданные большой группой европейских ученых — этологов и робототехников, — хотя внешне и не очень похожи на свой шестиногий прототип, в плане поведения представляют собой намного более точную имитацию живого насекомого.

Роботы имеют такую же длину тела, что и тараканы, и двигаются с такой же скоростью. Они отличают убежище (см. рисунок) от открытого освещенного пространства и способны оценить степень затененности. Кроме того, они чувствуют близость других тараканов и роботов, и это влияет на их поведение.

Алгоритм поведения тараканов в экспериментальной установке довольно прост. Сначала они хаотически бегают по всему тазику — исследуют обстановку. На этом этапе поведение их не является коллективным, оно не зависит от действий других насекомых, если не считать того, что тараканы все-таки чуют друг друга и избегают лобовых столкновений. Найдя одно из двух укрытий, таракан прячется там и какое-то время отдыхает, причем продолжительность отдыха зависит от двух параметров:

    1) от затененности, то есть от «качества» убежища (тараканы предпочитают отдыхать там, где потемнее);

    2) от присутствия товарищей: чем больше в убежище других тараканов, тем меньше вероятность, что в следующий момент времени данный таракан сорвется с места и помчится на поиски лучшей доли. Таким образом, чем больше в убежище тараканов, тем привлекательнее оно для их товарищей.

Этих простых правил оказывается вполне достаточно для того, чтобы в системе произошла самоорганизация, которая в данном случае заключается в том, что все тараканы в конце концов оказываются в одном убежище.

Роботов запрограммировали на точно такое же поведение. Сначала они рыщут по тазику в поисках убежища, стараясь не врезаться в других тараканов и роботов. Найдя убежище, они прячутся там, причем время «отдыха» зависит от тех же факторов, что и у живых тараканов, то есть от затененности и от количества товарищей. Правда, в отличие от живых тараканов, которые всегда предпочитают густую тень, роботов можно запрограммировать на предпочтение менее затененного убежища.

Чтобы тараканы приняли роботов за своих, форма тела не важна, но огромное значение имеет запах. В ходе предварительных экспериментов исследователи выяснили, какие именно вещества составляют основу той запаховой «визитной карточки», по которой тараканы идентифицируют друг друга. Этими веществами оказались определенные углеводороды, имеющиеся на поверхности тела тараканов. Экспериментаторы научились смывать эти вещества с тараканов при помощи специальных растворителей. Каждого робота заворачивали в фильтровальную бумажку, пропитанную тараканьим запахом в необходимой концентрации (чтобы на каждый квадратный миллиметр поверхности робота приходилось столько же пахучих веществ, сколько их имеется на теле живых тараканов). Этого оказалось достаточно, чтобы тараканы отнеслись к роботам с полным доверием и приняли их в свой коллектив.

В первой серии экспериментов роботы были запрограммированы на предпочтение темного убежища. Оказалось, что в этом случае смешанные группы из 12 тараканов и 4 роботов «самоорганизуются», «принимают коллективные решения» и вообще ведут себя совершенно так же, как и контрольные группы, состоявшие из 16 тараканов без роботов. Сидящие в убежище роботы и тараканы были в одинаковой степени «привлекательны» друг для друга. Таким образом, тараканы действительно принимали роботов за своих.

Это позволило ученым перейти ко второй серии экспериментов, целью которой было доказать, что роботы могут управлять коллективным поведением животных. Роботов запрограммировали на предпочтение менее затененного убежища. Теперь между поведением контрольных и смешанных групп выявились четкие различия. Контрольные группы из 16 тараканов выбирали светлое убежище только в 23% случаев. Смешанные группы из 12 тараканов и 4 роботов выбирали его гораздо чаще. В 61% случаев тараканы послушно шли за роботами в менее качественное убежище. Вот что значит стадный инстинкт!

Впрочем, всё было по-честному: в роботах ведь тоже было заложено уважение к мнению коллектива, и в остальных 39% случаев роботы в итоге оказывались вместе с шестиногими друзьями в темном убежище, хотя им самим больше нравилось светлое. Иногда выбор того или иного убежища инициировался роботами, иногда — тараканами. Важно, что роботы в этих экспериментах не были просто механизмами для управления поведением животных (как это было, например, в случае с роботами-пчелами, которые своим танцем направляли живых пчел в ту или иную сторону). Роботы участвовали в принятии коллективного решения наравне с живыми тараканами. В этом состоит главное отличие данного исследования от предыдущих опытов по внедрению роботов в коллективы животных.

Значение данной работы, конечно, не в том, что теперь можно при помощи роботов заманивать тараканов в ловушки (хотя, конечно, это тоже интересная мысль). Фактически, люди получают новый мощный инструмент воздействия на поведение больших групп животных.

В заключительной части статьи авторы выражают надежду, что в недалеком будущем подобные методы можно будет применять и к позвоночным. При помощи программируемых роботов, внедряемых в коллективы животных, можно будет решать самые разные проблемы — от научных до экономических и природоохранных.

Источник: J. Halloy et al. Social Integration of Robots into Groups of Cockroaches to Control Self-Organized Choices // Science. 2007. V. 318. P. 1155–1158.

См. также видеофильмы в дополнительных материалах к статье.

Александр Марков


Комментарии (6)



Последние новости: ЭтологияИнформационные технологииАлександр Марков

12.08
ПК обогнал суперкомпьютеры в решении задачи трехчастичного рассеяния
15.07
Самки синиц поют при появлении хищника
5.07
Биоразнообразие стимулирует собственный рост
4.07
Песня большеклювой камышевки имеет строго упорядоченную структуру
28.06
Подростки лучше учатся на положительном опыте, чем на отрицательном
27.06
Незамысловатая песня помогает птицам избегать хищников
22.06
Рыбки-брызгуны хорошо различают человеческие лица
21.06
Кишечная бактерия влияет на социальное поведение мышей
14.06
Полиплоидность предков эукариот — ключ к пониманию происхождения митоза и мейоза
6.06
Промышленный меланизм бабочек получил генетическое объяснение

Научная картинка дня


Новости науки по темам: антропология, археология, астрономическая научная картинка дня, астрономия, биология, биотехнологии, генетика, геология, затмения, информационные технологии, космос, лингвистика, математика, медицина, нанотехнологии, наука в России, наука и общество, Нобелевские премии, палеонтология, Первое апреля, психология, технологии, физика, химия, эволюция, экология, энергетика, этология

Новости науки по авторам: Валентин Анаников, Дарья Баранова, Вера Башмакова, Александр Бердичевский, Максим Борисов, Варвара Веденина, Александр Венедюхин, Михаил Волович, Михаил Гарбузов, Алексей Гиляров, Дмитрий Гиляров, Сергей Глаголев, Евгений Гордеев, Николай Горностаев, Владимир Гриньков, Дмитрий Дагаев, Юрий Ерин, Анастасия Еськова, Дмитрий Жарков, Андрей Журавлёв, Дмитрий Замолодчиков, Игорь Иванов, Вячеслав Калинин, Павел Квартальнов, Мария Кирсанова, Дмитрий Кирюхин, Александр Козловский, Юлия Кондратенко, Артем Коржиманов, Ольга Кочина, Аркадий Курамшин, Виталий Кушниров, Иван Лаврёнов, Алексей Левин, Андрей Логинов, Сергей Лысенков, Лейла Мамирова, Александр Марков, Мария Медникова, Вадим Мокиевский, Григорий Молев, Тарас Молотилин, Антон Морковин, Марат Мусин, Максим Нагорных, Елена Наймарк, Алексей Опаев, Петр Петров, Александр Пиперски, Константин Попадьин, Сергей Попов, Роман Ракитов, Татьяна Романовская, Александр Самардак, Александр Сергеев, Андрей Сидоренко, Виктория Скобеева, Даниил Смирнов, Павел Смирнов, Дарья Спасская, Любовь Стрельникова, Алексей Тимошенко, Александр Токарев, Александр Храмов, Мария Шнырёва, Сергей Ястребов, Светлана Ястребова

Новости науки по месяцам: 2016 VIII, VII, VI, V, IV, III, II, I  2015 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2014 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2013 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2012 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2011 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2010 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2009 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2008 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2007 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2006 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2005 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I 

Новости науки почтой (рассылка на Subscribe.ru):

 


Где еще почитать научные новости: «Биомолекула», «Вокруг света», Газета.ру. Наука, «Наука и жизнь», Наука и технологии РФ, «Научная Россия», «Популярная механика», РИА Наука, «Чердак», N+1, Naked Science

 


при поддержке фонда Дмитрия Зимина - Династия