Элементы Элементы большой науки

Поставить закладку

Напишите нам

Карта сайта

Содержание
Энциклопедия
Новости науки
LHC
Картинка дня
Библиотека
Видеотека
Книжный клуб
Задачи
Масштабы: времена
Детские вопросы
Плакаты
Научный календарь
Наука и право
ЖОБ
Наука в Рунете

Поиск

Подпишитесь на «Элементы»


ВКонтакте
в Твиттере
в Фейсбуке



Библиотека

 
Ф. Вильчек
«Красота физики». Глава из книги


Дж. Бэрроу
«История науки в знаменитых изображениях». Глава из книги


Ж. Резникова
И даман поманил за собой


В. Сурдин
Поиски новых планет


С. Горбунов
Сeratotherium simum cottoni. Последний из могикан


Д. Никифоров и др.
ЭКО: длинная история короткой встречи


А. Никонов
Небывалое бедствие в селе Кашкаранцы


Л. Сасскинд, Дж. Грабовски
«Теоретический минимум». Глава из книги


А. Сергеев, А. Благодатский
Насекомые и бионика: загадки зрительного аппарата


Л. Смолин
«Возвращение времени». Глава из книги







Главная / Новости науки версия для печати

Азот в океане связывается там, где он теряется


За счет деятельности азотфиксирующих бактерий в океан из атмосферы попадает за год около 140 миллионов тонн азота. Примерно такое же количество азота возвращается в атмосферу в результате осуществляемого другими бактериями процесса денитрификации — восстановления нитратов. Ранее предполагалось, что азотфиксация и денитрификация пространственно разобщены (к примеру, атмосферный азот, связанный в Северной Атлантике, возвращается в атмосферу на севере Индийского океана), но недавние исследования показали, что это не так. Азот связывается азотфиксаторами поблизости от тех мест, где он наиболее активно теряется в ходе денитрификации. Такие области выявлены, в частности, в Тихом океане и в Аравийском море.

Рис. 1. Распределение содержания хлорофилла в мг/м3 (среднегодовые данные для периода 1978–1986 гг.). Хорошо видно, что в центральных частях океана, в областях «центральных круговоротов» крайне мало фитопланктона. Эти области (показаны фиолетовым цветом) — по сути настоящие «биологические пустыни», где развитие фитопланктона ограничено острой нехваткой биогенных элементов — азота и фосфора. Высоко-продуктивные районы (показаны зеленым и желтым) — это Северная Атлантика, северная часть Тихого океана, воды, примыкающие к Антарктиде, и прибрежные области. Рисунок с сайта marine.rutgers.edu
Рис. 1. Распределение содержания хлорофилла в мг/м3 (среднегодовые данные для периода 1978–1986 гг.). Хорошо видно, что в центральных частях океана, в областях «центральных круговоротов» крайне мало фитопланктона. Эти области (показаны фиолетовым цветом) — по сути, настоящие «биологические пустыни», где развитие фитопланктона ограничено острой нехваткой биогенных элементов — азота и фосфора. Высоко-продуктивные районы (показаны зеленым и желтым) — это Северная Атлантика, северная часть Тихого океана, воды, примыкающие к Антарктиде, и прибрежные области. Рисунок с сайта marine.rutgers.edu

Основную массу органического вещества в океане создает фитопланктон — микроскопические взвешенные в толще воды водоросли — и цианобактерии. За счет дальнейшего использования этого вещества существует в океане почти вся остальная жизнь. Однако распределение фитопланктона по акватории Мирового океана (такие карты сейчас получают с помощью спутников, дистанционно измеряющих концентрацию хлорофилла в поверхностных водах) крайне неравномерное. Огромные по площади области в тропических и субтропических районах характеризуются крайне низкой продуктивностью (рис. 1). Высокая же продукция (и биомасса) фитопланктона наблюдается только в Северной Атлантике, в северной части Тихого океана, в некоторых местах Южного океана (недалеко от Антарктиды), а также непосредственно около берегов всех континентов и в районах подъема глубинных вод — апвеллинга (upwelling). Основная причина крайне низкой продуктивности тропических вод — недостаточное количество азота и фосфора, элементов, абсолютно необходимых всем организмам.

Углерод, азот и фосфор соотносятся в веществе океанического планктона в среднем как 106 : 16 : 1. То есть. на 1 атом фосфора приходится 16 атомов азота и 106 атомов углерода. Это соотношение называют «соотношением Редфильда» (Redfield ratio) — по имени американского океанолога Альфреда Редфильда, выявившего его еще в 1930-х годах. «Соотношение Редфильда» — это удобная точка отсчета, позволяющая судить о том, какой конкретно элемент — азот или фосфор — ограничивает в том или ином месте развитие фитопланктона (углерод можно не принимать во внимание: его в океанической среде всегда более чем достаточно). Получив данные по концентрации растворенного в воде минерального, то есть пригодного для использования фитопланктоном, азота (обычно это NO3) и фосфора (обычно PO43–), исследователи сравнивают их количественное отношение с соотношением Редфильда (то есть с тем, что в клетках). Если N : P > 16, то, скорее всего, фитопланктон ограничен нехваткой фосфора, если N : P < 16, то нехваткой азота.

В масштабах сотен тысяч и миллионов лет фитопланктон ограничен фосфором. Фосфор не образует газообразных соединений и перемещается с суши в океан с потоками воды. При мощных оледенениях, сопровождающихся сильными понижениями уровня океана, донные отложения (в которых постепенно накапливается фосфор, находившийся в толще воды) оказываются на суше, а их последующая эрозия ведет к возвращению дефицитного элемента в океан. Организмы практически не могут повлиять на геохимический круговорот фосфора — им остается только экономно распоряжаться тем, что им достанется.

Рис. 2. Это огромное, похожее на медузу, образование — сфотографированное из космоса скопление Trichodesmium — цианобактерий, играющих важную роль в связывании атмосферного азота в тропических областях. Снимок NASA сделан около Австралии (с сайта www.soes.soton.ac.uk)
Рис. 2. Это огромное, похожее на медузу, образование — сфотографированное из космоса скопление Trichodesmium — цианобактерий, играющих важную роль в связывании атмосферного азота в тропических областях. Снимок NASA сделан около Австралии (с сайта www.soes.soton.ac.uk)

С азотом ситуация иная. Этот элемент в молекулярной форме (N2) присутствует в атмосфере, где его доля достигает 80%. И хотя подавляющему большинству в таком виде он недоступен, существует группа бактерий, способных его потреблять и переводить в форму, пригодную для использования другими организмами (см. азотфиксация). Фактически, вся жизнь на Земле существует за счет азота, связанного азотфиксирующими бактериями. В водной среде основные азотфиксаторы — это цианобактерии. За счет их деятельности  океан поступает то количество атмосферного азота, которое соответствует доступному для фитопланктона фосфору. Иными словами, цианобактерии как бы «подстраивают» связывание азота под имеющийся фосфор. Когда же клетки планктонных организмов отмирают и разрушаются, то вода обогащается азотом и фосфором в соотношении Редфильда (N : P = 16 : 1).

Но возможности цианобактерий по «переделке» соотношения азота и фосфора в океане ограничены. Во-первых, азотфиксация — энергоемкий процесс: ведь нужно разорвать прочную тройную связь в молекуле N2. Цианобактерии используют для этого энергию света (они фототрофы и осуществляют нормальный фотосинтез) — соответственно, они могут жить только в верхних, хорошо освещенных слоях водной толщи, где порой образуют большие скопления (рис. 2). Во-вторых, всем азотфиксаторам в довольно большом количестве требуется железо — оно входит в состав нитрогеназы (nitrogenase), сложного ферментного комплекса, участвующего в разрыве тройной связи и переводящего N2 в NH3.

Рис. 3. Распределение пыли (г/м2 в год), приносимой в океан ветрами из Сахары, а также пустынь Аравийского полуострова и Центральной Азии. Именно с пылью попадает в океан железо, столь нужное азотфиксирующим цианобактериям. Рисунок из статьи: P.W.Boyd et al. Mesoscale iron enrichment experiments 1993-2005: Synthesis and future directions // Science. 2007. V. 315. P. 612–617
Рис. 3. Распределение пыли (г/м2 в год), приносимой в океан ветрами из Сахары, а также пустынь Аравийского полуострова и Центральной Азии. Именно с пылью попадает в океан железо, столь нужное азотфиксирующим цианобактериям. Рисунок из статьи: P.W.Boyd et al. Mesoscale iron enrichment experiments 1993-2005: Synthesis and future directions // Science. 2007. V. 315. P. 612–617

Будучи довольно тяжелым, железо поступает в океан или со стоком рек или с приносимой ветрами пылью. До центральных районов Тихого океана пыль почти не долетает, но в Атлантический океан (прежде всего к северу от экватора) ее попадает довольно много с ветрами, дующими со стороны Сахары (рис. 3). Поэтому в литературе и держалось мнение о том, что именно в этой области происходит интенсивная азотфиксация, а затем отсюда азот, доступный для использования фитопланктоном, течениями уносится на огромные расстояния и попадает в другие океаны.

Однако опубликованные недавно в журнале Nature результаты крупномасштабного исследования, предпринятого Куртисом Дёйчем, участником Программы по изменению климата, проводимой Вашингтонским университетом (Сиэтл), и его коллегами из других научных учреждений США и Швейцарии, заставляют совершенно по-новому взглянуть на проблему. Эти авторы обобщили огромный материал по соотношению азота и фосфора в различных районах Мирового океана и с учетом модели глобальной циркуляции океана выявили те районы, где наиболее интенсивно идет азотфиксация.

Рис 4. Распределение интенсивности азотфиксации (микромоль N2/м2 в год) по акватории Мирового океана. Азот связывается там, где интенсивно идет денитрификация. Рис. из обсуждаемой статьи в Nature
Рис 4. Распределение интенсивности азотфиксации (микромоль N22 в год) по акватории Мирового океана. Азот связывается там, где интенсивно идет денитрификация. Рис. из обсуждаемой статьи в Nature

Значительное внимание было уделено при этом денитрификации — процессу, возвращающему азот в атмосферу. Дело в том, что после того, как азот, усвоенный азотфиксаторами, переводится ими в аммонийную форму, его окисляют (используя кислород) до нитратов нитрифицирующие бактерии, а нитраты, в свою очередь, восстанавливаются до молекулярного азота бактериями денитрификаторами. Таким образом замыкается цикл азота в системе «океан—атмосфера». Денитрификация протекает в анаэробных условиях, поскольку только в отсутствие кислорода в качестве окислителя органического вещества может использоваться NO3. В океане денитрификация происходит во фьордах (где часто не перемешивается глубинная толща вода), в верхнем слое донных отложений и в некоторых местах в водной толще океана (на глубине 200–700 м), где мало кислорода, но есть органическое вещество и нитрат. Такие условия складываются, в частности, в Аравийском море и в некоторых областях тропической зоны Тихого океана.

Дёйч и его соавторы показали, что наряду с денитрификацией в этих же местах одновременно происходит очень интенсивная азотфиксация (рис. 4). Ранее этого не замечали, поскольку процесс маскировался противоположно направленной денитрификацией. В этой же работе авторам удалось рассчитать общее количество атмосферного азота, связываемого азотфиксаторами в океане. Полученная цифра весьма внушительная — около 140 × 1012 г (140 млн тонн) азота в год, причем почти 100 × 1012 г (100 млн тонн) приходится на Тихий океан. Роль же Атлантического океана оказалась довольно скромной.

Источник: Curtis Deutsch, Jorge L. Sarmiento, Daniel M. Sigman, Nicolas Gruber, John P. Dunne. Spatial coupling of nitrogen inputs and losses in the ocean // Nature. 2007. V. 445. P. 163–167.

См. также:
1) P. G. Falkowski. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean // Nature. 1997. V. 387. P. 272–275.
2) Цианобактерии совмещают в одной клетке фотосинтез и фиксацию атмосферного азота, «Элементы», 01.02.2006.
3) Анаэробные бактерии научились окислять метан, восстанавливая нитраты, «Элементы», 17.04.2006.
4) Если нет кислорода, можно дышать нитратами, «Элементы», 12.09.2006.

Алексей Гиляров


Комментировать



Последние новости: ЭкологияАлексей Гиляров

4.05
Рост концентрации CO2 в атмосфере способствует увеличению растительного покрова
24.02
Борнео — центр эндемизма птиц современной Индонезии
22.01
Дельфины помогают олушам ловить сардин
11.01
Голоценовые биосообщества изменились после расселения человека по Земле
26.11
Коммуны миролюбивых пауков погибают быстрее, чем агрессивных
12.09
Перевылов трески привел к увеличению разнообразия рыб
2.09
Бурые водоросли не подтверждают экологическую гипотезу чередования гаплоидной и диплоидной стадий
3.08
Новый сорт риса поможет уменьшить выбросы парниковых газов
29.07
У комаров генетическая адаптация к окружающей среде определяется только географией
21.07
Биоразнообразие полезно для здоровья


Новости науки по темам: антропология, археология, астрономическая научная картинка дня, астрономия, биология, биотехнологии, генетика, геология, затмения, информационные технологии, космос, лингвистика, математика, медицина, нанотехнологии, наука в России, наука и общество, Нобелевские премии, палеонтология, Первое апреля, психология, технологии, физика, химия, эволюция, экология, энергетика, этология

Новости науки по авторам: Валентин Анаников, Дарья Баранова, Вера Башмакова, Александр Бердичевский, Максим Борисов, Варвара Веденина, Александр Венедюхин, Михаил Волович, Михаил Гарбузов, Алексей Гиляров, Дмитрий Гиляров, Сергей Глаголев, Евгений Гордеев, Николай Горностаев, Владимир Гриньков, Дмитрий Дагаев, Юрий Ерин, Анастасия Еськова, Дмитрий Жарков, Андрей Журавлёв, Дмитрий Замолодчиков, Игорь Иванов, Вячеслав Калинин, Павел Квартальнов, Мария Кирсанова, Дмитрий Кирюхин, Александр Козловский, Юлия Кондратенко, Артем Коржиманов, Ольга Кочина, Виталий Кушниров, Иван Лаврёнов, Алексей Левин, Андрей Логинов, Сергей Лысенков, Лейла Мамирова, Александр Марков, Мария Медникова, Вадим Мокиевский, Григорий Молев, Тарас Молотилин, Марат Мусин, Максим Нагорных, Елена Наймарк, Алексей Опаев, Петр Петров, Александр Пиперски, Константин Попадьин, Сергей Попов, Роман Ракитов, Татьяна Романовская, Александр Самардак, Александр Сергеев, Андрей Сидоренко, Виктория Скобеева, Даниил Смирнов, Дарья Спасская, Любовь Стрельникова, Алексей Тимошенко, Александр Токарев, Мария Шнырёва, Сергей Ястребов, Светлана Ястребова

Новости науки по месяцам: 2016 V, IV, III, II, I  2015 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2014 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2013 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2012 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2011 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2010 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2009 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2008 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2007 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2006 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2005 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I 

Новости науки почтой (рассылка на Subscribe.ru):

 


Где еще почитать научные новости: «Биомолекула», «Вокруг света», Газета.ру. Наука, «Наука и жизнь», Наука и технологии РФ, «Научная Россия», «Популярная механика», РИА Наука, «Чердак», N+1, Naked Science

 


при поддержке фонда Дмитрия Зимина - Династия