Элементы Элементы большой науки

Поставить закладку

Напишите нам

Карта сайта

Содержание
Энциклопедия
Новости науки
LHC
Картинка дня
Библиотека
Видеотека
Книжный клуб
Задачи
Масштабы: времена
Детские вопросы
Плакаты
Научный календарь
Наука и право
ЖОБ
Наука в Рунете

Поиск

Подпишитесь на «Элементы»



ВКонтакте
в Твиттере
в Фейсбуке
на Youtube
в Instagram



Библиотека

 
А. Панчин
«Сумма биотехнологии». Глава из книги


И. Левонтина
«О чем речь». Главы из книги


Ч. Уилан
«Голая статистика». Главы из книги


Интервью М. Гельфанда с С. Шлосманом
«Замечательная статья» значит только то, что она содержит замечательный результат


П. Лекутер, Д. Берресон
«Пуговицы Наполеона». Глава из книги


Д. Вибе
Телескопы с жидкими линзами: как это работает


А. Паевский
Ближайший космос. Быстрее. Лучше. Дешевле


Р. Фишман
Прионы: смертоносные молекулы-зомби


Д. Мамонтов
Торий: спасет ли он планету от энергетического кризиса?


Р. Эспарза, Р. Фишман
Марс: научный гид







Главная / Новости науки версия для печати

Теория суперструн: в поисках выхода из кризиса


Частично свернутые многомерные пространства — ключевые элементы современной теории квантовой гравитации (изображение с сайта urss.ru)
Частично свернутые многомерные пространства — ключевые элементы современной теории квантовой гравитации (изображение с сайта urss.ru)

Теория суперструн — главная надежда на «теорию всего» — находится в кризисе. Похоже, что она может описать какой угодно мир, а значит, не способна ничего предсказывать. Поиском выхода из тупика заняты сейчас многие теоретики.

Теоретическая физика, изучая всё более глубинное устройство нашего мира, становится всё более математизированной наукой. В работах по квантовой гравитации — одному из самых активных направлений этих исследований — изучаются скорее симметрии различных многомерных структур, чем свойства реального мира. Почему же физикам пришлось настолько отрываться от окружающего мира и влезать в эти математические джунгли? В чем смысл этих исследований?

Отчасти, эта ситуация повторяет попытки ученых XIX века понять закономерности в устройстве материи. К тому времени было выяснено, что всё многообразие физических и химических свойств должно получаться из основных свойств небольшого числа химических элементов, но долгое время не удавалось нащупать этот фундаментальный закон. Перед учеными стояла задача: имея перед глазами набор макроскопических свойств веществ, попытаться угадать микроскопические степени свободы, из которых бы и складывались свойства материи. Тогда никто не говорил про симметрии, но именно поиском таких симметричных структур фактически и занимались ученые. Такая структура лежала и в основе найденного Менделеевым периодического закона, который спустя несколько десятилетий был полностью объяснен квантовой физикой.

Сейчас физики, занимающиеся теорией струн, ищут точно такую же закономерность, но уже в устройстве элементарных частиц, их взаимодействий, а также самого пространства-времени. Всяческие струны, сложные многомерные пространства и прочие геометрические объекты вводятся как раз для того, чтобы нащупать тот более глубокий уровень устройства нашего мира на сверхмалых расстояниях, из которого следовали бы основные макроскопические свойства Вселенной. Точно так же, как в середине XIX века атомная гипотеза казалась наиболее удачной для объяснения свойств веществ, сейчас гипотеза о частицах-суперструнах кажется наиболее «экономичной» математической теорией для описания свойств частиц, их взаимодействий и пространства-времени. (Подробности о теории суперструн можно найти в русскоязычной версии официального сайта теории струн.)

Есть, однако, очень важное различие между разработкой атомной теории строения вещества и современными исследованиями суперструн. Свойства атомов самым непосредственным образом сказываются на свойствах веществ. Например, если бы периодический закон был слегка иным, он бы сразу привел к совсем иному набору химических свойств веществ. В теории суперструн такой прямой связи нет: несколько теорий, различающихся на сверхмалых расстояниях, могут привести к одному и тому же макроскопическому миру. Это неудобно, так как трудно проверить, какая из теорий больше подходит для описания мира, но это еще полбеды. Оказывается, даже одна и та же суперструнная теория при различном наборе значений параметров может привести к самым разнообразным макроскопическим «мирам».

Складывается очень неприятная ситуация (на сленге суперструнщиков она получила название «проблема ландшафта»): такое ощущение, что, каким бы ни был наш макроскопический мир, всегда найдутся описывающие его параметры суперструнной теории. Под угрозой оказывается одно из самых главных свойств научной теории — ее фальсифицируемость, а значит, и способность к конкретным предсказаниям.

В последние год-два ситуация настолько накалилась, что на прошедшей недавно конференции String 2005 звучали призывы к ревизии всей суперструнной программы исследований. Эта ревизия стала главным мотивом и некоторых свежих статей.

В недавней статье hep-th/0509157, названной «25 вопросов для суперструнщиков», была предпринята попытка выявить те направления исследований внутри теории суперструн, которые приблизили бы ее к «реальной жизни», т. е. связали бы ее с наблюдамыми свойствами макроскопического мира.

В другой работе, hep-th/0509212, говорится, что с предсказательной способностью теории суперструн не всё так плохо, как утверждают скептики. Да, соглашается автор, количество вариантов устройства нашего мира, которые могут вытекать из одной и той же теории, действительно велико. Однако есть подозрение, что количество вариантов, не вытекающих ни из каких суперструнных теорий, еще больше. Автор призывает теоретиков заняться поиском и классификацией именно таких вариантов. Если это подозрение подтвердится (а для этого потребуется доказать несколько математических теорем), то ситуация слегка улучшится: теория суперструн станет, по крайней мере отчасти, фальсифицируемой.

Отдельно стоит отметить и комментарии к этой статье, появившиеся в блогах Любоша Мотля, тоже работающего в теории струн, а также математика Петера Войта, известного своим крайне отрицательным отношением ко всей суперструнной деятельности.

Есть ли выход из кризиса в теории суперструн, должно показать ближайшее будущее. Однако хочу подчеркнуть, что такого рода кризисы уже случались в теоретической физике XX века. Например, потребовалось почти двадцать лет для того, чтобы математически корректным образом решить проблему расходимостей в квантовой теории, в результате чего появилась теория перенормировок — новый математический язык для решения физических задач. Не исключено, что и в нашем случае новый, неведомый еще математический подход сможет решить проблему.

Игорь Иванов


Комментарии (3)



Последние новости: ФизикаИгорь Иванов

27.06
Коллайдер достиг проектной светимости
23.06
Поиск двухфотонного пика в новых данных ведется слепым анализом
20.06
LIGO поймала новые всплески гравитационных волн
15.06
Вышли статьи ATLAS и CMS о двухфотонном пике при 750 ГэВ
14.06
Коллайдер штампует рекорды
8.06
Опубликованы окончательные результаты по хиггсовскому бозону в сеансе Run 1
7.06
CMS опробовал новую методику «разведки данных»
7.06
LHC выходит на запланированный темп набора данных
6.06
Улучшено ограничение сверху на ширину бозона Хиггса
3.06
Распад бозона Хиггса на мюон и тау-лептон не находит подтверждения в новых данных

Научная картинка дня


Новости науки по темам: антропология, археология, астрономическая научная картинка дня, астрономия, биология, биотехнологии, генетика, геология, затмения, информационные технологии, космос, лингвистика, математика, медицина, нанотехнологии, наука в России, наука и общество, Нобелевские премии, палеонтология, Первое апреля, психология, технологии, физика, химия, эволюция, экология, энергетика, этология

Новости науки по авторам: Валентин Анаников, Дарья Баранова, Вера Башмакова, Александр Бердичевский, Максим Борисов, Варвара Веденина, Александр Венедюхин, Михаил Волович, Михаил Гарбузов, Алексей Гиляров, Дмитрий Гиляров, Сергей Глаголев, Евгений Гордеев, Николай Горностаев, Владимир Гриньков, Дмитрий Дагаев, Юрий Ерин, Анастасия Еськова, Дмитрий Жарков, Андрей Журавлёв, Дмитрий Замолодчиков, Игорь Иванов, Вячеслав Калинин, Павел Квартальнов, Мария Кирсанова, Дмитрий Кирюхин, Александр Козловский, Юлия Кондратенко, Артем Коржиманов, Ольга Кочина, Виталий Кушниров, Иван Лаврёнов, Алексей Левин, Андрей Логинов, Сергей Лысенков, Лейла Мамирова, Александр Марков, Мария Медникова, Вадим Мокиевский, Григорий Молев, Тарас Молотилин, Марат Мусин, Максим Нагорных, Елена Наймарк, Алексей Опаев, Петр Петров, Александр Пиперски, Константин Попадьин, Сергей Попов, Роман Ракитов, Татьяна Романовская, Александр Самардак, Александр Сергеев, Андрей Сидоренко, Виктория Скобеева, Даниил Смирнов, Дарья Спасская, Любовь Стрельникова, Алексей Тимошенко, Александр Токарев, Мария Шнырёва, Сергей Ястребов, Светлана Ястребова

Новости науки по месяцам: 2016 VI, V, IV, III, II, I  2015 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2014 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2013 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2012 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2011 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2010 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2009 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2008 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2007 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2006 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2005 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I 

Новости науки почтой (рассылка на Subscribe.ru):

 


Где еще почитать научные новости: «Биомолекула», «Вокруг света», Газета.ру. Наука, «Наука и жизнь», Наука и технологии РФ, «Научная Россия», «Популярная механика», РИА Наука, «Чердак», N+1, Naked Science

 


при поддержке фонда Дмитрия Зимина - Династия