Элементы Элементы большой науки

Поставить закладку

Напишите нам

Карта сайта

Содержание
Энциклопедия
Новости науки
LHC
Картинка дня
Библиотека
Методология науки
Избранное
Публичные лекции
Лекции для школьников
Библиотека «Династии»
Интервью
Опубликовано полностью
В популярных журналах
«В мире науки»
«Знание — сила»
«Квант»
«Квантик»
«Кот Шрёдингера»
«Наука и жизнь»
«Наука из первых рук»
«Популярная механика»
«Потенциал»: Химия. Биология. Медицина
«Потенциал»: Математика. Физика. Информатика
«Природа»
«Троицкий вариант»
«Химия и жизнь»
«Что нового...»
«Экология и жизнь»
Из Книжного клуба
Статьи наших друзей
Статьи лауреатов «Династии»
Выставка
Происхождение жизни
Видеотека
Книжный клуб
Задачи
Масштабы: времена
Детские вопросы
Плакаты
Научный календарь
Наука и право
ЖОБ
Наука в Рунете

Поиск

Подпишитесь на «Элементы»



ВКонтакте
в Твиттере
в Фейсбуке
на Youtube
в Instagram



Новости науки

 
28.09
Новые геномные данные позволили уточнить историю заселения Евразии и Австралии

26.09
Муравьи-листорезы при уходе за потомством используют противогрибковый препарат

23.09
Впервые получены структуры контактной и сольватноразделённой ионных пар силенил-литиевого соединения

21.09
В условиях антропогенного шума летучие мыши перестают полагаться на слух

20.09
Третий — не лишний: в большинстве лишайников присутствуют два гриба и водоросль






Главная / Библиотека / В популярных журналах / «Популярная механика» версия для печати

Звезды на земле: термояд

Игорь Егоров
«Популярная механика» №5, 2012

Вторая половина XX века была периодом бурного развития ядерной физики. Стало ясно, что ядерные реакции можно использовать для получения огромной энергии из мизерного количества топлива. От взрыва первой ядерной бомбы до первой АЭС прошло всего девять лет, и когда в 1952 году была испытана водородная бомба, появились прогнозы, что уже в 1960-х вступят в строй термоядерные электростанции. Увы, эти надежды не оправдались.

Термоядерные реакции. Из всех термоядерных реакций в ближайшей перспективе интересны лишь четыре: дейтерий + дейтерий (продукты — тритий и протон, выделяемая энергия 4,0 МэВ), дейтерий + дейтерий (гелий-3 и нейтрон, 3,3 МэВ), дейтерий + тритий (гелий-4 и нейтрон, 17,6 МэВ) и дейтерий + гелий-3 (гелий-4 и протон, 18,2 МэВ). Первая и вторая реакции идут параллельно с равной вероятностью. Образующиеся тритий и гелий-3 «сгорают» в третьей и четвертой реакциях. Изображение: «Популярная механика»
Термоядерные реакции
Из всех термоядерных реакций в ближайшей перспективе интересны лишь четыре: дейтерий + дейтерий (продукты — тритий и протон, выделяемая энергия 4,0 МэВ), дейтерий + дейтерий (гелий-3 и нейтрон, 3,3 МэВ), дейтерий + тритий (гелий-4 и нейтрон, 17,6 МэВ) и дейтерий + гелий-3 (гелий-4 и протон, 18,2 МэВ). Первая и вторая реакции идут параллельно с равной вероятностью. Образующиеся тритий и гелий-3 «сгорают» в третьей и четвертой реакциях. Изображение: «Популярная механика»

Основной источник энергии для человечества в настоящее время — сжигание угля, нефти и газа. Но их запасы ограничены, а продукты сгорания загрязняют окружающую среду. Угольная электростанция дает больше радиоактивных выбросов, чем АЭС такой же мощности! Так почему же мы до сих пор не перешли на ядерные источники энергии? Причин тому много, но главной из них в последнее время стала радиофобия. Несмотря на то что угольная электростанция даже при штатной работе вредит здоровью куда большего числа людей, чем аварийные выбросы на АЭС, она делает это тихо и незаметно для публики. Аварии же на АЭС сразу становятся главными новостями в СМИ, вызывая общую панику (часто совершенно необоснованную). Впрочем, это вовсе не означает, что у ядерной энергетики нет объективных проблем. Немало хлопот доставляют радиоактивные отходы: технологии работы с ними все еще крайне дороги, и до идеальной ситуации, когда все они будут полностью перерабатываться и использоваться, еще далеко.

От деления к синтезу

Потенциально решить эти проблемы позволяет переход от реакторов деления к реакторам синтеза. Если типичный реактор деления содержит десятки тонн радиоактивного топлива, которое преобразуется в десятки тонн радиоактивных отходов, содержащих самые разнообразные радиоактивные изотопы, то реактор синтеза использует лишь сотни граммов, максимум килограммы, одного радиоактивного изотопа водорода — трития. Кроме того, что для реакции требуется ничтожное количество этого наименее опасного радиоактивного изотопа, его производство к тому же планируется осуществлять непосредственно на электростанции, чтобы минимизировать риски, связанные с транспортировкой. Продуктами синтеза являются стабильные (не радиоактивные) и нетоксичные водород и гелий. Кроме того, в отличие от реакции деления, термоядерная реакция при разрушении установки моментально прекращается, не создавая опасности теплового взрыва. Так почему же до сих пор не построено ни одной действующей термоядерной электростанции? Причина в том, что из перечисленных преимуществ неизбежно вытекают недостатки: создать условия синтеза оказалось куда сложнее, чем предполагалось в начале.

Z-пинч

Первым устройством, в котором планировалось получить управляемую термоядерную реакцию, стал так называемый Z-пинч. Эта установка в простейшем случае состоит всего из двух электродов, находящихся среде дейтерия (водорода-2) или смеси дейтерия и трития, и батареи высоковольтных импульсных конденсаторов. На первый взгляд кажется, что она позволяет получить сжатую плазму, разогретую до огромной температуры: именно то, что нужно для термоядерной реакции! Однако в жизни все оказалось, увы, далеко не так радужно. Плазменный жгут оказался неустойчивым: малейший его изгиб приводит к усилению магнитного поля с одной стороны и ослаблению с другой, возникающие силы еще больше увеличивают изгиб жгута — и вся плазма «вываливается» на боковую стенку камеры. Жгут неустойчив не только к изгибу, малейшее его утоньшение приводит к усилению в этой части магнитного поля, которое еще сильнее сжимает плазму, выдавливая ее в оставшийся объем жгута, пока жгут не будет окончательно «передавлен». Передавленная часть обладает большим электрическим сопротивлением, так что ток обрывается, магнитное поле исчезает, и вся плазма рассеивается.

Критерий Лоусона

Чтобы термоядерная реакция была энергетически выгодной, нужно обеспечить достаточно высокую температуру термоядерного топлива, достаточно высокую его плотность и малые потери энергии. Последние численно характеризуются так называемым временем удержания, которое равно отношению запасенной в плазме тепловой энергии к мощности потерь энергии (многие ошибочно полагают, что «время удержания» — это время, в течение которого в установке «горит» плазма, но это не так). При температуре смеси дейтерия и трития, равной 10 кэВ (примерно 110 000 000 градусов), нам нужно получить произведение числа частиц топлива в 1 см3 (то есть концентрации плазмы) на время удержания (в секундах) не менее 1014. При этом не важно, будет ли у нас плазма с концентрацией 1014 см–3 и временем удержания 1 с или плазма с концентрацией 1023 и временем удержания 1 нс. Этот критерий называется критерием Лоусона.

Кроме критерия Лоусона, отвечающего за получение энергетически выгодной реакции, существует еще критерий зажигания плазмы, который для дейтерий-тритиевой реакции примерно втрое больше критерия Лоусона. «Зажигание» означает, что той доли термоядерной энергии, что остается в плазме, будет хватать для поддержания необходимой температуры, и дополнительный нагрев плазмы больше не потребуется.


Z-пинч


Z-пинч — обжатие плазмы кольцевым магнитным полем, взаимодействующим с электрическим током. Изображение: «Популярная механика»
Z-пинч — обжатие плазмы кольцевым магнитным полем, взаимодействующим с электрическим током. Изображение: «Популярная механика»

Принцип работы Z-пинча прост: электрический ток порождает кольцевое магнитное поле, которое взаимодействует с этим же током и сжимает его. В результате плотность и температура плазмы, через которую течет ток, возрастают.

Стабилизировать плазменный жгут удалось, наложив на него мощное внешнее магнитное поле, параллельное току, и поместив в толстый проводящий кожух (при перемещении плазмы перемещается и магнитное поле, что индуцирует в кожухе электрический ток, стремящийся вернуть плазму на место). Плазма перестала изгибаться и пережиматься, но до термоядерной реакции в сколько-нибудь серьезных масштабах все равно было далеко: плазма касается электродов и отдает им свое тепло.

Современные работы в области синтеза на Z-пинче предполагают еще один принцип создания термоядерной плазмы: ток протекает через трубку из плазмы вольфрама, которая создает мощное рентгеновское излучение, сжимающее и разогревающее капсулу с термоядерным топливом, находящуюся внутри плазменной трубки, подобно тому, как это происходит в термоядерной бомбе. Однако эти работы имеют чисто исследовательский характер (изучаются механизмы работы ядерного оружия), а выделение энергии в этом процессе все еще в миллионы раз меньше, чем потребление.

Выбор реакции

На первый взгляд, в качестве термоядерного топлива логичнее всего использовать чистый дейтерий: он стоит относительно дешево и безопасен. Однако дейтерий с дейтерием реагирует в сотню раз менее охотно, чем с тритием. Это означает, что для работы реактора на смеси дейтерия и трития достаточно температуры 10 кэВ, а для работы на чистом дейтерии требуется более 50 кэВ. А чем выше температура — тем выше потери энергии. Поэтому как минимум первое время термоядерную энергетику планируется строить на дейтерий-тритиевом топливе. Тритий при этом будет нарабатываться в самом реакторе за счет облучения образующимися в нем быстрыми нейтронами лития.

«Неправильные» нейтроны

В культовом фильме «Девять дней одного года» главный герой, работая на термоядерной установке, получил серьезную дозу нейтронного облучения. Однако позднее оказалось, что нейтроны эти рождены не в результате реакции синтеза. Это не выдумка режиссера, а реальный эффект, наблюдаемый в Z-пинчах. В момент обрыва электрического тока индуктивность плазмы приводит к генерации огромного напряжения — миллионов вольт. Отдельные ионы водорода, ускорившись в этом поле, способны буквально выбивать нейтроны из электродов. Поначалу это явление было принято за верный признак протекания термоядерной реакции, но последующий анализ спектра энергий нейтронов показал, что они имеют иное происхождение.

Режим с улучшенным удержанием

H-мода токамака — это такой режим его работы, когда при большой мощности дополнительного нагрева потери плазмой энергии резко уменьшаются. Случайное открытие в 1982 году режима с улучшенным удержанием по своей значимости не уступает изобретению самого токамака. Общепринятой теории этого явления пока еще не существует, но это ничуть не мешает использовать его на практике. Все современные токамаки работают в этом режиме, так как он уменьшает потери более чем в два раза. Впоследствии подобный режим был обнаружен и на стеллараторах, что указывает на то, что это общее свойство тороидальных систем, однако на них удержание улучшается лишь примерно на 30%.

Нагрев плазмы

Существует три основных метода нагрева плазмы. Омический нагрев — за счет протекания через нее электрического тока — наиболее эффективен на первых этапах, так как с ростом температуры у плазмы снижается электрическое сопротивление. Электромагнитный нагрев использует частоту, совпадающую с частотой вращения вокруг магнитных силовых линий электронов или ионов. При инжекции быстрых нейтральных атомов создается поток отрицательных ионов, которые затем нейтрализуются, превращаясь в нейтральные атомы, способные проходить через магнитное поле в центр плазмы, чтобы передать свою энергию именно там.

А реакторы ли это?

Тритий радиоактивен, а мощное нейтронное облучение от D-T-реакции создает наведенную радиоактивность в элементах конструкции реактора. В то же время поведение плазмы обычного водорода или дейтерия весьма близко к поведению плазмы из смеси дейтерия и трития. Это привело к тому, что за всю историю лишь две термоядерные установки работали на смеси дейтерия и трития: токамаки TFTR и JET. На остальных установках даже дейтерий используется далеко не всегда. Так что название «термоядерная» в определении установки вовсе не означает, что в ней когда-либо реально происходили термоядерные реакции (а в тех, где происходят, почти всегда используют чистый дейтерий).

Гибридный реактор

D-T-реакция рождает 14-МэВ нейтроны, которые могут делить даже обедненный уран. Деление одного ядра урана сопровождается выделением примерно 200 МэВ энергии, что в десять с лишним раз превосходит энергию, выделяющуюся при синтезе. Так что уже существующие токамаки могли бы стать энергетически выгодными, если бы их окружили урановой оболочкой. Перед реакторами деления такие гибридные реакторы имели бы преимущество в невозможности развития в них неуправляемой цепной реакции. Кроме того, крайне интенсивные потоки нейтронов должны перерабатывать долгоживущие продукты деления урана в короткоживущие, что существенно снижает проблему захоронения отходов.

Пробкотрон, стелларатор, токамак

Другой вариант создания необходимых для реакции условий — так называемые открытые магнитные ловушки. Самая известная из них — «пробкотрон»: труба с продольным магнитным полем, которое усиливается на ее концах и ослабевает в середине. Увеличенное на концах поле создает «магнитную пробку» (откуда русское название), или «магнитное зеркало» (английское — mirror machine), которое удерживает плазму от выхода за пределы установки через торцы. Однако такое удержание неполное, часть заряженных частиц, движущихся по определенным траекториям, оказывается способной пройти через эти пробки. А в результате столкновений любая частица рано или поздно попадет на такую траекторию. Кроме того, плазма в пробкотроне оказалась еще и неустойчивой: если в каком-то месте небольшой участок плазмы удаляется от оси установки, возникают силы, выбрасывающие плазму на стенку камеры. Хотя базовая идея пробкотрона была значительно усовершенствована (что позволило уменьшить как неустойчивость плазмы, так и проницаемость пробок), к параметрам, необходимым для энергетически выгодного синтеза, на практике даже приблизиться не удалось.

Сферический с вакуумом

Изображение: «Популярная механика»

 

Чем меньше отношение большого радиуса тора токамака (расстояния от центра всего тора до центра поперечного сечения его трубы) к малому (радиусу сечения трубы), тем больше может быть давление плазмы при том же магнитном поле.

Уменьшая это отношение, ученые перешли от круглого сечения плазмы и вакуумной камеры к D-образному (в этом случае роль малого радиуса выполняет половина высоты сечения). У всех современных токамаков именно такое сечение.

Предельным случаем стал так называемый сферический токамак. В нем вакуумная камера и плазма имеют почти сферическую форму, за исключением узкого канала, соединяющего полюса сферы. В канале проходят проводники магнитных катушек. Первый сферический токамак, START, появился лишь в 1991 году, так что это достаточно молодое направление, но оно уже показало возможность получить то же давление плазмы при втрое меньшем магнитном поле.

 

Изображение: «Популярная механика»

Можно ли сделать так, чтобы плазма не уходила через «пробки»? Казалось бы, очевидное решение — свернуть плазму в кольцо. Однако тогда магнитное поле внутри кольца получается сильнее, чем снаружи, и плазма снова стремится уйти на стенку камеры. Выход из этой непростой ситуации тоже казался довольно очевидным: вместо кольца сделать «восьмерку», тогда на одном участке частица будет удаляться от оси установки, а на другом — возвращаться назад. Именно так ученые пришли к идее первого стелларатора. Но такую «восьмерку» нельзя сделать в одной плоскости, так что пришлось использовать третье измерение, изгибая магнитное поле во втором направлении, что тоже привело к постепенному уходу частиц от оси к стенке камеры.

Ситуация резко изменилась с созданием установок типа «токамак». Результаты, полученные на токамаке Т-3 во второй половине 1960-х годов, были столь ошеломляющими для того времени, что западные ученые приезжали в СССР со своим измерительным оборудованием, чтобы убедиться в параметрах плазмы самостоятельно. Реальность даже превзошла их ожидания.

Стеллараторы

Изображение: «Популярная механика»

 

Все современные конфигурации стеллараторов близки к тору.

Одна из наиболее распространенных конфигураций предполагает использование катушек, аналогичных катушкам полоидального поля токамаков, и четырех-шести скрученных винтом вокруг вакуумной камеры проводников с разнонаправленным током. Создаваемое при этом сложное магнитное поле позволяет надежно удерживать плазму, не требуя протекания через нее кольцевого электрического тока. Винтовые проводники могут отсутствовать, но тогда катушки «тороидального» поля устанавливаются вдоль сложной трехмерной кривой. Последние разработки предполагают использование магнитных катушек и вакуумной камеры очень сложной формы (сильно «мятый» тор), просчитанной на компьютере.

 

Эти фантастически переплетенные трубы не арт-проект, а камера стелларатора, изогнутая в виде сложной трехмерной кривой
Эти фантастически переплетенные трубы не арт-проект, а камера стелларатора, изогнутая в виде сложной трехмерной кривой

В руках инерции

Помимо магнитного удержания существует и принципиально иной подход к термоядерному синтезу — инерциальное удержание. Если в первом случае мы стараемся долгое время удерживать плазму очень низкой концентрации (концентрация молекул в воздухе вокруг вас в сотни тысяч раз больше), то во втором — сжимаем плазму до огромной плотности, на порядок выше плотности самых тяжелых металлов, в расчете, что реакция успеет пройти за то короткое время, пока плазма не успела разлететься в стороны.

Первоначально, в 1960-х годах, планировалось использовать маленький шарик из замороженного термоядерного топлива, равномерно облучаемый со всех сторон множеством лазерных лучей. Поверхность шарика должна была моментально испариться и, равномерно расширяясь во все стороны, сжать и нагреть оставшуюся часть топлива. Однако на практике облучение оказалось недостаточно равномерным. Кроме того, часть энергии излучения передавалась во внутренние слои, вызывая их нагрев, что усложняло сжатие. В итоге шарик сжимался неравномерно и слабо.

Проблему неравномерности удалось решить, существенно изменив конструкцию мишени. Теперь шарик размещается внутри специальной небольшой металлической камеры (она называется «хольраум», от нем. hohlraum — полость) с отверстиями, через которые внутрь попадают лазерные лучи. Кроме того, используются кристаллы, конвертирующие лазерное излучение ИК-диапазона в ультрафиолетовое. Это УФ-излучение поглощается тончайшим слоем материала хольраума, который при этом нагревается до огромной температуры и излучает в области мягкого рентгена. В свою очередь, рентгеновское излучение поглощается тончайшим слоем на поверхности топливной капсулы (шарика с топливом). Это же позволило решить и проблему преждевременного нагрева внутренних слоев.

Электростатическое удержание

Концепцию электростатического удержания ионов легче всего понять на примере установки, называемой фузором. Ее основу составляет сферический сетчатый электрод, на который подается отрицательный потенциал. Ускоренные в отдельном ускорителе или полем самого центрального электрода ионы попадают внутрь него и удерживаются там электростатическим полем: если ион стремится вылететь наружу, поле электрода разворачивает его назад. Увы, вероятность столкновения иона с сеткой на много порядков выше, чем вероятность вступления в реакцию синтеза, что делает энергетически выгодную реакцию невозможной. Подобные установки нашли применение лишь в качестве источников нейтронов.

Холодный синтез

Стремясь совершить сенсационное открытие, многие ученые стремятся видеть синтез везде, где только можно: в «пропитанных» дейтерием металлах при протекании тока, при электролизе жидкостей, содержащих дейтерий, во время образования в них кавитационных пузырьков и т. д. Но в большинстве случаев эти результаты невоспроизводимы и хорошо объяснимы без использования синтеза.

Внимание — мошенники!

Продолжая «славную традицию», начавшуюся с поисков философского камня, а затем подхваченную неутомимыми изобретателями вечного двигателя, современные мошенники предлагают уже сейчас купить у них «генератор холодного синтеза», «кавитационный реактор» и прочие «бестопливные генераторы». Увы, на самом деле таких источников энергии пока не существует. Так что если вам предлагают купить устройство, вырабатывающее энергию за счет холодного ядерного синтеза, то вас пытаются просто надуть!

Однако мощность лазеров оказалась недостаточной для того, чтобы в реакцию успела вступить заметная часть топлива. Кроме того, эффективность лазеров была весьма мала, лишь около 1%. Чтобы синтез был энергетически выгодным при таком низком КПД лазеров, должно было прореагировать практически все сжатое топливо. При попытках заменить лазеры на пучки легких или тяжелых ионов, которые можно генерировать с куда большим КПД, ученые также столкнулись с массой проблем: легкие ионы отталкиваются друг от друга, что мешает их фокусировке, и тормозятся при столкновениях с остаточным газом в камере, а ускорителей тяжелых ионов с нужными параметрами создать не удалось.

Магнитные перспективы

Большинство надежд в области термоядерной энергетики сейчас связано с токамаками. Особенно после открытия у них режима с улучшенным удержанием. Токамак является одновременно и свернутым в кольцо Z-пинчем (по плазме протекает кольцевой электрический ток, создающий магнитное поле, необходимое для ее удержания), и последовательностью пробкотронов, собранных в кольцо и создающих «гофрированное» тороидальное магнитное поле. Кроме того, на тороидальное поле катушек и поле плазменного тока накладывается перпендикулярное плоскости тора поле, создаваемое несколькими отдельными катушками. Это дополнительное поле, называемое полоидальным, усиливает магнитное поле плазменного тока (также полоидальное) с внешней стороны тора и ослабляет его с внутренней стороны. Таким образом, суммарное магнитное поле со всех сторон от плазменного жгута оказывается одинаковым, и его положение остается стабильным. Меняя это дополнительное поле, можно в определенных пределах перемещать плазменный жгут внутри вакуумной камеры.

Важной проблемой токамаков долгое время была необходимость создавать в плазме кольцевой ток. Для этого через центральное отверстие тора токамака пропускали магнитопровод, магнитный поток в котором непрерывно изменяли. Изменение магнитного потока рождает вихревое электрическое поле, которое ионизирует газ в вакуумной камере и поддерживает ток в получившейся плазме. Однако ток в плазме должен поддерживаться непрерывно, а это означает, что магнитный поток должен непрерывно изменяться в одном направлении. Это, разумеется, невозможно, так что ток в токамаках удавалось поддерживать лишь ограниченное время (от долей секунды до нескольких секунд). К счастью, был обнаружен так называемый бутстреп-ток, который возникает в плазме без внешнего вихревого поля. Кроме того, были разработаны методы нагрева плазмы, одновременно вызывающие в ней необходимый кольцевой ток. Совместно это дало потенциальную возможность сколь угодно длительного поддержания горячей плазмы. На практике рекорд на данный момент принадлежит токамаку Tore Supra, где плазма непрерывно «горела» более шести минут.

Второй тип установок удержания плазмы, с которым связаны большие надежды, — это стеллараторы. За прошедшие десятилетия конструкция стеллараторов кардинально изменилась. От первоначальной «восьмерки» почти ничего не осталось, и эти установки стали гораздо ближе к токамакам. Хотя пока время удержания у стеллараторов меньше, чем у токамаков (из-за менее эффективной H-моды), а себестоимость их постройки выше, поведение плазмы в них более спокойное, что означает более высокий ресурс первой внутренней стенки вакуумной камеры. Для коммерческого освоения термоядерного синтеза этот фактор представляет очень большое значение.

Мюонный катализ

Принципиально иной подход к синтезу предлагает концепция мюонного катализа. Мюон — это нестабильная элементарная частица, имеющая такой же заряд, как и электрон, но в 207 раз большую массу. Мюон может замещать электрон в атоме водорода, при этом размер атома уменьшается в 207 раз, что позволяет одному ядру водорода приближаться к другому, не затрачивая на это энергию. Но на получение одного мюона тратится 10 ГэВ энергии, и нужно произвести несколько тысяч реакций синтеза на один мюон для получения энергетической выгоды. Из-за возможности «прилипания» мюона к образующемуся в реакции гелию пока не удалось получить более нескольких сотен реакций.


Сборка стелларатора wendelstein 7-x института физики плазмы Макса Планка
Сборка стелларатора wendelstein 7-x института физики плазмы Макса Планка

Инерциальные надежды

Инерциальный синтез тоже не стоит на месте. За десятки лет развития лазерной техники появились перспективы повысить КПД лазеров примерно в десять раз. А их мощность на практике удалось повысить в сотни и тысячи раз. Ведутся работы и над ускорителями тяжелых ионов с параметрами, пригодными для термоядерного применения. Кроме того, важнейшим фактором прогресса в области инерциального синтеза стала концепция «быстрого поджига». Она предполагает использование двух импульсов: один сжимает термоядерное топливо, а другой разогревает его небольшую часть. Предполагается, что начавшаяся в небольшой части топлива реакция впоследствии распространится дальше и охватит все топливо. Такой подход позволяет существенно снизить затраты энергии, а значит, сделать реакцию выгодной при меньшей доле прореагировавшего топлива.

Проблемы токамаков

Несмотря на прогресс установок иных типов, токамаки на данный момент все равно остаются вне конкуренции: если на двух токамаках (TFTR и JET) еще в 1990-х реально было получено выделение термоядерной энергии, приблизительно равное затратам энергии на нагрев плазмы (пусть такой режим и длился лишь около секунды), то на установках других типов ничего подобного добиться не удалось. Даже простое увеличение размеров токамаков приведет к осуществимости в них энергетически выгодного синтеза. Сейчас во Франции строится международный реактор ITER, который должен будет продемонстрировать это на практике.

Однако проблем хватает и у токамаков. ITER стоит миллиарды долларов, что неприемлемо для будущих коммерческих реакторов. Ни один реактор не работал непрерывно в течение даже нескольких часов, не говоря уж о неделях и месяцах, что опять же необходимо для промышленного применения. Пока нет уверенности, что материалы внутренней стенки вакуумной камеры смогут выдержать длительное воздействие плазмы.

Сделать проект менее затратным сможет концепция токамака с сильным полем. За счет увеличения поля в два-три раза планируется получить нужные параметры плазмы в относительно небольшой установке. На такой концепции, в частности, основан реактор Ignitor, который совместно с итальянскими коллегами сейчас начинают строить в подмосковном ТРИНИТИ (Троицкий институт инновационных и термоядерных исследований). Если расчеты инженеров оправдаются, то при многократно меньшей по сравнению с ITER цене в этом реакторе удастся получить зажигание плазмы.

Вперед, к звездам!

Продукты термоядерной реакции разлетаются в разные стороны со скоростями, составляющими тысячи километров в секунду. Это делает возможным создание сверхэффективных ракетных двигателей. Удельный импульс у них будет выше, чем у лучших электрореактивных двигателей, а потребление энергии при этом может быть даже отрицательным (теоретически возможна выработка, а не потребление энергии). Более того, есть все основания полагать, что сделать термоядерный ракетный двигатель будет даже проще, чем наземный реактор: нет проблемы с созданием вакуума, с теплоизоляцией сверхпроводящих магнитов, нет ограничений по габаритам и т. д. Кроме того, выработка двигателем электроэнергии желательна, но вовсе не обязательна; достаточно, чтобы он не слишком много ее потреблял.

По предварительным оценкам, даже при современном уровне техники возможно создание термоядерного ракетного двигателя для полета к планетам Солнечной системы (при соответствующем финансировании). Освоение технологии таких двигателей в десятки раз повысит скорость пилотируемых полетов и даст возможность иметь на борту большие резервные запасы топлива, что позволит сделать полет на Марс не более сложным занятием, чем сейчас работа на МКС. Для автоматических станций потенциально станет доступной скорость в 10% от скорости света, что означает возможность отправки исследовательских зондов к ближайшим звездам и получение научных данных еще при жизни их создателей.

Наиболее проработанной в настоящее время считается концепция термоядерного ракетного двигателя на основе инерциального синтеза. При этом отличие двигателя от реактора заключается в магнитном поле, которое направляет заряженные продукты реакции в одну сторону. Второй вариант предполагает использование открытой ловушки, у которой одна из пробок намеренно ослаблена. Истекающая из нее плазма будет создавать реактивную силу.

Термоядерное будущее

Освоение термоядерного синтеза оказалось на много порядков сложнее, чем это казалось вначале. И хотя множество проблем уже решено, оставшихся хватит на несколько ближайших десятилетий напряженного труда тысяч ученых и инженеров. Но перспективы, которые открывают перед нами превращения изотопов водорода и гелия, столь велики, а проделанный путь уже столь значителен, что останавливаться на полпути не имеет смысла. Что бы ни говорили многочисленные скептики, будущее, безусловно, за синтезом.


Комментарии (9)


 


при поддержке фонда Дмитрия Зимина - Династия