Элементы Элементы большой науки

Поставить закладку

Напишите нам

Карта сайта

Содержание
Энциклопедия
Новости науки
LHC
Картинка дня
Библиотека
Методология науки
Избранное
Публичные лекции
Лекции для школьников
Библиотека «Династии»
Интервью
Опубликовано полностью
В популярных журналах
«В мире науки»
«Знание — сила»
«Квант»
«Квантик»
«Кот Шрёдингера»
«Наука и жизнь»
«Наука из первых рук»
«Популярная механика»
«Потенциал»: Химия. Биология. Медицина
«Потенциал»: Математика. Физика. Информатика
«Природа»
«Троицкий вариант»
«Химия и жизнь»
«Что нового...»
«Экология и жизнь»
Из Книжного клуба
Статьи наших друзей
Статьи лауреатов «Династии»
Выставка
Происхождение жизни
Видеотека
Книжный клуб
Задачи
Масштабы: времена
Детские вопросы
Плакаты
Научный календарь
Наука и право
ЖОБ
Наука в Рунете

Поиск

Архив журнала «Химия и жизнь» за 40 лет!

На 4 CD или 1 DVD





Главная / Библиотека / В популярных журналах / «Химия и жизнь» версия для печати

Радиоактивность внутри нас

Илья Абрамович Леенсон
«Химия и жизнь» №7, 2009

Художник Н. Колпакова. Изображение «Химия и жизнь»
Художник Н. Колпакова. Изображение «Химия и жизнь»

Cначала — две цитаты: из раздела «Пишут, что...» и из статьи А. М. Чекмарева «Радиоактивность вокруг нас» (обе — из «Химии и жизни», 2008, № 10). Цитата первая: «Практически все клетки человеческого тела ежегодно испытывают хотя бы одно событие радиационного поражения, многие — несколько раз». И вторая: «Большинство людей получает от 0,3 до 0,6 миллизиверта в год за счет земной радиации... В среднем от земных источников естественной радиации мы получаем примерно 350 микрозивертов в год (то есть индивидуальные дозы у большинства из нас ближе к 0,3 миллизиверта)... Если говорить о том, какой именно элемент вносит наибольший вклад в наше внутреннее облучение, то это газ радон и продукты его распада. Его доля — около 75% годовой индивидуальной дозы облучения человека от земных источников и около половины дозы от всех источников радиации». (Кстати, более подробно об облучении от вездесущего радона можно прочитать в статье «Еще раз о радиоактивности в нашем доме», опубликованной в № 4, 1990.)

Прежде всего — несколько слов о единице облучения в статье Чекмарева. Она названа в честь шведского физика Рольфа Максимилиана Зиверта (1896–1966). Это — единица эквивалентной дозы излучения в СИ, принятая на XVI Генеральной конференции по мерам и весам в 1979 году (с 1975 по 1979 год она назвалась «грэй»). Зиверт (Зв) равен дозе любого вида ионизирующего излучения, производящего такое же биологическое действие, как и доза рентгеновского или гамма-излучения в 1 Гр, а эта единица (как единица поглощенной дозы) названа в честь английского физика Луиса Гарольда Грэя (1905–1965). Один грэй — поглощенная доза излучения, при которой облученному веществу массой 1 кг передается энергия ионизирующего излучения 1 Дж. Значит, для среднего человека массой 70 кг 1 Зв соответствует общей поглощенной энергии 70 Дж. Для теплотехники это небольшая величина, ее достаточно для нагрева стакана воды менее чем на 0,1 градуса. Для человека же такая доза, особенно если она однократная, означает исключительно сильное поражение. Поэтому на практике применяют дольные единицы: 1 мЗв и 1 мкЗв.

Мало кто знает, что, если человека поместить в свинцовую камеру с толстыми стенками и никакой радон в его легкие попадать не будет, он все равно будет облучаться. Источник этого облучения — радионуклиды в его собственном теле, которые попали к нему при рождении и продолжают пополняться всю его жизнь. Избавиться от них невозможно принципиально, как, например, невозможно избавить человека от кальция или фосфора в его организме. Таких радионуклидов, вносящих основной вклад во внутреннее облучение, всего два. Это калий-40 и углерод-14 (так называемый радиоуглерод).

Начнем с калия. Это один из наиболее распространенных элементов в земной коре: его в ней 2,1%. Калий представлен в природе тремя изотопами:

Изображение «Химия и жизнь»

В среднем относительная атомная масса калия с учетом распространенности его изотопов равна 39,0983. Один из этих изотопов, 40K, радиоактивен, хотя его активность и невелика, поскольку очень велик период полураспада (t1/2 = 1,28·10лет). Исходя из приведенных данных, можно рассчитать, какую радиацию мы получаем за счет распада калия в собственном теле. В человеке массой 70 кг содержится примерно 0,2% калия, или 140 г (кстати, это больше, чем натрия, которого в человеке около 100 г). Следовательно, средний человек всегда носит в своем теле 0,0164 г радиоактивного калия-40, или 2,47·1020 атомов.

Скорость радиоактивного распада — уравнение первого порядка, то есть она пропорциональна числу имеющихся атомов (N): dN/dt = –kN; знак минус показывает, что число атомов уменьшается со временем. (В радиохимии константу k обычно называют постоянной распада и обозначают греческой буквой λ.) Константа k связана с периодом полураспада простым соотношением: k = ln2/t1/2 = 0,693/1,28·109 = 5,41·10–10 год–1. То есть в теле человека распадается 5,41·10–10 × 2,47·1020 = 1,34·1011 атомов за год — больше ста миллиардов, или 4250 атомов каждую секунду!

Какая же энергия выделяется при этом? Нуклид 40K распадается по двум путям: на 11% он претерпевает электронный захват (его еще называют K-захватом, по номеру оболочки, с которой происходит захват электрона): 40K + е → 40Ar. Именно в результате такого распада 40K в земной коре и образовалась основная часть атмосферного аргона. Этот процесс является также основой так называемого калий-аргонового метода в геохронологии. Остальные 89% 40K (1,2·1011 атомов в год) распадаются с испусканием бета-излучения: 40K → 40Ca + е. Энергия этих β-частиц равна 1,314 МэВ = 1,314·106 эВ. Как известно, 1 эВ соответствует 96 500 Дж/моль, или 96 500/6·1023 = 1,6·10–19 Дж в расчете на одну частицу. Следовательно, энергия всех испущенных за год в теле человека β-частиц составит 1,314·106х1,6·10–19 × 1,2·1011 = 0,025 Дж или 0,36 мЗв.

Но и это не всё. Помимо калия-40 в нашем теле всегда присутствует радиоактивный углерод-14 с периодом полураспада 5730 лет, избавиться от которого тоже нельзя. Земля, как известно, подвергается непрерывному облучению космическими частицами. Если бы не атмосфера, пропускающая к земной поверхности лишь небольшую часть космического излучения, жизнь на Земле вряд ли была бы возможна. Из разнообразных ядерных реакций, идущих в верхних слоях атмосферы, нас сейчас интересует лишь одна — захват нейтронов атомами азота, при котором из ядра вылетает один протон: 14N + n → 14C + р.

Ядро составляет ничтожную часть объема атома, поэтому нейтроны даже при высокой плотности их потока редко попадают в ядро и над 1 см2 земной поверхности за 1 с образуется в среднем всего 2,4 ядра 14C. Если учесть площадь поверхности Земли, то получится, что ежегодно в атмосфере образуется примерно 8 кг этого нуклида. Земля существует миллиарды лет, и если бы ядра 14C были бы стабильными, то их масса на Земле исчислялась бы десятками миллионов тонн. Однако нуклид 14C радиоактивен и непрерывно распадается. Поэтому всего на Земле имеется около 60 тонн радиоуглерода, из которых ежегодно распадается 8 кг — столько же, сколько его образуется (в этом случае говорят о радиоактивном равновесии). Для Земли 60 тонн — крайне малая величина. Так, в атмосферном углекислом газе количество радиоуглерода в среднем составляет лишь около 1 тонны, или 3·10–11% от «обычного» атмосферного углерода (12C + 13C); остальной радиоуглерод в основном растворен в воде океанов. Содержание 14C нарушалось в 50-е — начале 60-х годов XX века в результате испытаний ядерного оружия, и лишь к началу XXI века оно почти вернулось к прежнему уровню.

Большинству из вновь образовавшихся атомов 14C предстоит долгая жизнь — на многие тысячи лет. После образования они почти мгновенно окисляются в воздухе до 14CO, а затем в течение нескольких недель — до 14CO2, молекулы которого равномерно перемешиваются с воздухом. Углекислый газ атмосферы — основной источник углерода, который в огромных количествах усваивается растениями в процессах фотосинтеза. Так радиоуглерод попадает в биосферу. Растениями питаются животные, поэтому вся живая органическая материя содержит радиоуглерод, хотя и в ничтожных количествах (1,18·10–14% относительно углерода-12). Причем большое время его жизни и здесь способствует его равномерному распределению. Очень важно, что в результате обменных процессов, протекающих в живой природе, содержание 14C в растениях и животных в течение их жизни остается постоянным (хотя в разных растениях — разным, см. «Химию и жизнь», 2005, № 4). Но как только обмен с окружающей средой прекращается, содержание радиоуглерода начинает очень медленно снижаться — вдвое каждые 5730 лет.

Радиоуглерод входит также в состав неорганических соединений, которые растворены в воде морей и океанов, в подземных водах и находятся в обменном равновесии с углекислым газом атмосферы. В основном это растворимые гидрокарбонаты, которыми так богаты минеральные воды. Но как только обмен прекращается (например, углерод вошел в состав минерала), происходит то же, что и в живой природе после гибели организма — содержание 14C в обычном углероде со временем начинает убывать. Подробное рассмотрение закономерностей образования и распада радиоуглерода позволило американскому физикохимику Уилларду Фрэнку Либби (1908–1980) совершить в конце 40-х годов выдающееся открытие и через несколько лет получить Нобелевскую премию по химии «за разработку метода использования углерода-14 для определения возраста в археологии, геологии, геофизике и других областях науки».

Вернемся теперь к «среднему» человеку и посчитаем скорость распада радиоуглерода в его теле. Известно, что в 1 г природного «живого» углерода происходит 15,3 распада 14C в минуту. Такая малая активность (намного меньше фона) сильно затрудняла измерения с помощью счетчиков, поэтому сейчас для точного определения содержания радиоуглерода используются масс-спектрометрические методы. В человеке массой 70 кг содержится около 14 кг углерода. Следовательно, в минуту в нем будет распадаться 15,3·103 × 70 = 1,07·106 атомов, а в год — 5,63·1011 атомов 14C, величина того же порядка, что и для атомов 40K (конечно, это случайное совпадение). Однако энергия при этом выделяется не такая большая. Углерод-14, как и калий-40, претерпевает β-распад, но со значительно меньшей энергией — всего 0,156 МэВ = 0,156·106 эВ. Значит, суммарная энергия всех β-частиц равна 0,156·106 × 1,6·10–19 × 5,63·1011 = 0,014 Дж, или 0,2 мЗв. Общая же доза от «внутреннего» облучения составит 0,36 + 0,2 = 0,56 мЗв, то есть столько же, сколько от внешних источников! Следует, однако, отметить, что мягкое излучение радиоуглерода задерживается в тканях полностью, тогда как более энергичные частицы, испускаемые атомами 40K, могут частично вылетать из тела.

Как видим, общее число частиц высокой энергии, испускаемых в теле человека нуклидами 40K и 14C в течение года, приближается к триллиону (1012). Клеток в организме порядка ста триллионов. Однако следует учесть, что мы рассчитали только «внутренние» частицы, тогда как человек подвергается также и внешнему облучению. Еще важнее то, что одна частица высокой энергии может вызвать целый каскад превращений и поразить не одну клетку. Поэтому приведенная в начале статьи цитата выглядит вполне правдоподобной, хотя и парадоксальной для небиолога.

В заключение — несколько забавных расчетов. Зная, сколько атомов 40K распадается в человеке за год по механизму 40K + е → 40Аr (примерно 1,5·1010), легко подсчитать, что в теле человека в течение 50 лет образуется около 3·10-8 мл аргона, а у всех людей на Земле — менее 200 мл — не хватит, чтобы надуть один воздушный шарик...

Современное значение относительной атомной массы калия — 39,0983. Какое значение получил бы воображаемый инопланетный химик, если бы он провел измерения этой величины в момент образования нашей планеты, 4,5 млрд лет назад? Отношение числа атомов 40K к современному рассчитывается по простой формуле: N0/N = exp(–kt) = exp(5,41·10–10 × 4,5·109) = 11,4. Теперь рассмотрим образец земной коры, содержащей 100 атомов калия. Из них сейчас на долю 39K приходится (в среднем, конечно) 93,2581 атомов, на долю 40K — 0,0117 атомов и на долю 41K — 6,7302 атомов. В момент образования Земли число атомов 39K и 41K было таким же, а число атомов 40K было в 11,4 раза больше, 0,1334; то есть к настоящему времени распалось 91,2% первоначального количества атомов калия-40! Итак, 4,5 млрд лет назад наш воображаемый образец содержал 100,1217 атомов. Их суммарная масса составляла 93,2581 × 38,9637 + 0,1334 × 39,9640 + 6,7302 × 40,9618 = 3914,6929 г, а относительная атомная масса элемента калия была 3914,6929/100,1217 = 39,0993. Изменение в третьем знаке после запятой инопланетный химик смог бы установить.

В заключение попробуем оценить, насколько нагрелась бы земная кора только за счет радиоактивного распада 40K, если бы в ней распалось всего 5% от имеющегося сейчас количества 40K — без учета тепловых потерь в окружающее пространство. Такое количество распадется за 95 миллионов лет. Будем считать, что калий распространен равномерно, а теплоемкость земных пород примем равной 1 Дж/(г·К). Сейчас в 1 кг породы содержится примерно 21 г калия, из которых на долю 40K приходится 21 × 0,000117 = 0,0025 г. При распаде в этой породе 5% 40K, то есть 0,0025 × 0,05 = 1,25·10-4 г, или 3,12·10-6 моль, выделится 1,314·106 (эВ) × 96,5 (кДж/(моль·эВ)) × З,12·10–6(моль) ≈ 400 кДж. В отсутствие тепловых потерь это привело бы к нагреву земной коры на 400 К! Таким образом, распад калия-40 вносит заметный вклад в тепловой баланс Земли и, вероятно, других планет. Действительно, по разным оценкам, распад калия-40 дает от 10 до 15% суммарной скорости генерации энергии в земной коре.


Комментировать


 


при поддержке фонда Дмитрия Зимина - Династия