Элементы Элементы большой науки

Поставить закладку

Напишите нам

Карта сайта

Содержание
Энциклопедия
Новости науки
LHC
Картинка дня
Библиотека
Методология науки
Избранное
Публичные лекции
Лекции для школьников
Библиотека «Династии»
Интервью
Опубликовано полностью
В популярных журналах
«В мире науки»
«Знание — сила»
«Квант»
«Квантик»
«Кот Шрёдингера»
«Наука и жизнь»
«Наука из первых рук»
«Популярная механика»
«Потенциал»: Химия. Биология. Медицина
«Потенциал»: Математика. Физика. Информатика
«Природа»
«Троицкий вариант»
«Химия и жизнь»
«Что нового...»
«Экология и жизнь»
Из Книжного клуба
Статьи наших друзей
Статьи лауреатов «Династии»
Выставка
Происхождение жизни
Видеотека
Книжный клуб
Задачи
Масштабы: времена
Детские вопросы
Плакаты
Научный календарь
Наука и право
ЖОБ
Наука в Рунете

Поиск

Подпишитесь на «Элементы»



ВКонтакте
в Твиттере
в Фейсбуке
на Youtube
в Instagram



Новости науки

 
22.06
Рыбки-брызгуны хорошо различают человеческие лица

21.06
Кишечная бактерия влияет на социальное поведение мышей

20.06
LIGO поймала новые всплески гравитационных волн

17.06
В металло-карбеноидах чем больше катион щелочного металла, тем стабильнее молекула

16.06
В Старом и Новом Свете птицы сходно реагируют на глобальное потепление






Главная / Библиотека / В популярных журналах / «В мире науки» версия для печати

Татьяна Потапова
«В мире науки» №3, 2006

Трансформация энергии в растительной клетке

В настоящее время процесс «запасания солнечного света» растениями описан в деталях на атомно-молекулярном уровне. В нем участвуют десятки видов молекул, расположенных в строгом порядке и четко выполняющих свои функции с точностью до мельчайших долей секунды. Наиболее важными составными частями фотосинтетического аппарата являются:

  • Светособирающая антенна.
  • Фотохимический реакционный центр.
  • Цепь транспорта электронов.

Механизм сопряжения электронного транспорта с трансмембранным переносом протонов и синтезом АТФ.

Фотосинтез (изображение: www.sciam.ru)
Фотосинтез (изображение: www.sciam.ru)
Фотосинтез (изображение: www.sciam.ru)

У системы первичных процессов фотосинтеза есть одно важное свойство, которое позволило проникнуть в ее тайны чрезвычайно глубоко и с высокой точностью. Система «включается» светом, а это значит, что ее можно тестировать как радиотехническое устройство с помощью коротких импульсов света (например, лазерных вспышек). Кроме того, эффективно используются современные спектральные методы: дифференциальная и импульсная спектрофотометрия в полосах поглощения отдельных молекул – участников первичных реакций; флуорометрия; методы электронного парамагнитного и ядерного магнитного резонанса. Принципиально важным оказалось изучение препаратов фотосинтетических мембран при низких температурах, а также использование методов математического моделирования и компьютерной имитации.

Удивительно интересные выводы были сделаны биофизиками при анализе механизмов транспорта электрона, которые обеспечивают его эффективный и направленный перенос в макромолекулярных комплексах реакционного центра. Исследование кинетики первичных процессов фотосинтеза при низких температурах (-196оС) показало, что перемещение электрона при температуре жидкого азота происходит со скоростями, в общем близкими к тем, что наблюдаются при комнатной температуре. В основе данного процесса лежит квантово-механическое явление — так называемый туннельный эффект.

Для переноса электрона в фотосинтетической цепи характерно еще одно принципиальное свойство. Как только электрон «добирается» до молекулы акцептора, он утрачивает часть энергии, и обратное движение на этом участке становится невозможным. Потеря электронной энергии происходит в колебаниях легких атомных групп белка-акцептора. Характерное время колебаний составляет несколько пикосекунд. Смещения расстояний, которые при этом происходят у колеблющихся ядер, незначительны – меньше 0,01 Å. Если в ходе таких опытов заменить в белке водород на дейтерий, то, поскольку он обладает большей массой, колебания замедляются, соответственно скорость переноса электрона падает и может быть зарегистрирована экспериментально.

Начиная с последних десятилетий XX в. все большую роль в развитии представлений о структурных изменениях фотосинтетического аппарата играет математическая биофизика – быстро развивающаяся область на стыке прикладной математики, физики, экспериментальной и теоретической биологии. Накопление знаний о структуре, строении и деталях организации фотосинтетического аппарата вместе с ростом возможностей вычислительной техники делают математическое моделирование первичных процессов фотосинтеза все более действенным инструментом, с помощью которого данные спектральных измерений переводятся на язык кинетических параметров и далее, с помощью компьютерной визуализации, на язык структурных изменений фотосинтетического аппарата.

З.Г. Фетисова — сотрудник Института имени А.Н. Белозерского в МГУ им. М.В. Ломоносова — исследовала с помощью математического моделирования процесс миграции энергии электронного возбуждения в модельных фотосинтетических единицах и сопоставила теоретические выводы с данными прямых биофизических измерений свойств природных антенн. В результате ею был теоретически предсказан, а затем экспериментально выявлен ключевой принцип оптимизации функционирования светособирающих структур: олигомеризация пигментов светособирающей антенны. Возможно, это один из самых ранних примеров способности живых структур к кооперативному решению задач жизнеобеспечения.


Комментарии (1)


 


при поддержке фонда Дмитрия Зимина - Династия