Элементы Элементы большой науки

Поставить закладку

Напишите нам

Карта сайта

Содержание
Энциклопедия
Новости науки
LHC
Картинка дня
Библиотека
Методология науки
Избранное
Публичные лекции
Лекции для школьников
Библиотека «Династии»
Интервью
Опубликовано полностью
В популярных журналах
«В мире науки»
«Знание — сила»
«Квант»
«Квантик»
«Кот Шрёдингера»
«Наука и жизнь»
«Наука из первых рук»
«Популярная механика»
«Потенциал»: Химия. Биология. Медицина
«Потенциал»: Математика. Физика. Информатика
«Природа»
«Троицкий вариант»
«Химия и жизнь»
«Что нового...»
«Экология и жизнь»
Из Книжного клуба
Статьи наших друзей
Статьи лауреатов «Династии»
Выставка
Происхождение жизни
Видеотека
Книжный клуб
Задачи
Масштабы: времена
Детские вопросы
Плакаты
Научный календарь
Наука и право
ЖОБ
Наука в Рунете

Поиск

Подпишитесь на «Элементы»



ВКонтакте
в Твиттере
в Фейсбуке
на Youtube
в Instagram



Новости науки

 
05.12
Хищные бактерии помогают иммунной системе справиться с инфекцией

01.12
Иммунный статус макак зависит от социального

29.11
Муравьи способны узнавать себя в зеркале

28.11
У собак есть эпизодическая память

25.11
Самцы дроздовидных камышевок определяют качество самки по размеру ее гнезда






Главная / Библиотека / В популярных журналах / «В мире науки» версия для печати

Хуан Малдасена
«В мире науки» №2, 2006

Непростое объединение

Для многих физиков квантовая теория гравитации — это Чаша святого Грааля, потому что вся физика за исключением сил тяготения прекрасно описывается квантовыми законами. Примерно 80 лет назад квантовая механика была разработана для описания частиц и сил в атомных и субатомных масштабах, при которых становятся существенными квантовые эффекты. В квантовых теориях у объектов нет определенных положений и скоростей, и все описывается вероятностями и волнами, занимающими определенные области пространства. В квантовом мире все пребывает в постоянном движении: даже «пустое» пространство заполнено так называемыми виртуальными частицами, которые непрерывно возникают и исчезают.

Вместе с тем общая теория относительности (лучшая теория гравитации) является принципиально классической (то есть неквантовой). Великое творение Эйнштейна гласит, что вблизи любого сгустка вещества или энергии искривляется пространство-время, а вместе с ним и траектории частиц, которые словно оказываются в гравитационном поле. Общая теория относительности чрезвычайно стройна и красива, а многие ее предсказания проверены с величайшей точностью.

В классических теориях объекты имеют определенные положения и скорости, подобно планетам, обращающимся вокруг Солнца. Зная координаты, скорости и массы, можно с помощью уравнений общей теории относительности вычислить искривления пространства-времени и определить влияние тяготения на траектории рассматриваемых тел. Кроме того, пустое релятивистское пространство-время является идеально гладким независимо от того, насколько детально его исследуют. Оно представляет собой абсолютно ровную арену, на которой выступают вещество и энергия.

Проблема создания квантовой версии общей теории относительности не только в том, что в масштабе атомов и электронов у частиц нет определенных положений и скоростей. В еще более малых масштабах, сопоставимых с длиной Планка (~10–35 м), квантовое пространство-время должно представлять собой кипящую пену, море виртуальных частиц, заполняющее все пустое пространство. В условиях, когда вещество и пространство-время столь изменчивы, уравнения общей теории относительности теряют смысл. Если мы предположим, что вещество повинуется законам квантовой механики, а гравитация подчиняется общей теории относительности, то столкнемся с математическими противоречиями. Поэтому-то и необходима квантовая теория гравитации.

В большинстве ситуаций противоречивые требования квантовой механики и общей теории относительности не представляют проблемы, поскольку или квантовые, или гравитационные эффекты оказываются настолько малыми, что ими можно пренебречь. Однако при сильном искривлении пространства-времени становятся существенными квантовые аспекты гравитации. Чтобы создать большое искривление пространства-времени требуется очень большая масса или большая ее концентрация. Даже Солнце не способно настолько искривить пространство-время, чтобы проявления квантовых эффектов гравитации стали очевидными.

Хотя в настоящее время квантовые эффекты пренебрежимо малы, они играли важнейшую роль на начальных стадиях Большого взрыва. Ими же определяются процессы, протекающие в черных дырах. Поскольку гравитация связана с искривлением пространства-времени, квантовая теория гравитации будет теорией квантового пространства-времени. Она поможет физикам понять, из чего состоит пространственно-временная пена, упомянутая ранее.

Многообещающий подход к квантовой теории гравитации — теория струн, которую физики-теоретики разрабатывают с 1970-х годов. С ее помощью удается устранить некоторые препятствия, мешающие построить логически последовательную квантовую теорию гравитации. Однако теория струн все еще в стадии разработки: физикам пока неизвестны ни ее точные уравнения, ни фундаментальные принципы, определяющие их форму. Кроме того, есть целый ряд физических величин, значения которых невозможно вывести из имеющихся уравнений.

Обзор: Эквивалентные миры

  • Согласно одной замечательной теории, вселенная, которая существует в двух измерениях и не содержит гравитации, может быть полностью эквивалентна трехмерной вселенной с гравитацией. Трехмерный мир мог бы возникнуть из физики двумерной вселенной, как объемное голографическое изображение из плоской голограммы.
  • Двумерная вселенная существует на границе трехмерной, где существуют сильно взаимодействующие кварки и глюоны. Физика во внутреннем объеме включает квантовую теорию гравитации, которую специалисты по теории струн пытались разработать в течение многих десятилетий.
  • Эквивалентность предоставляет новый подход к пониманию свойств черных дыр, которое требует правильного объединения квантовой механики и теории тяготения. Математическая часть теории еще не была строго проверена, но она, похоже, полезна для анализа последних экспериментальных данных физики высоких энергий.

В последние годы теоретики получили множество интересных результатов, заставляющих по-новому взглянуть на квантовое пространство-время (см. Ландшафт теории струн, «В мире науки» №12, 2004). Недавно появилось первое полное, логически последовательное квантовое описание гравитации в отрицательно искривленном пространстве-времени, для которого голографические теории верны.


Комментарии (2)


 


при поддержке фонда Дмитрия Зимина - Династия