Элементы Элементы большой науки

Поставить закладку

Напишите нам

Карта сайта

Содержание
Энциклопедия
Новости науки
LHC
Картинка дня
Библиотека
Методология науки
Избранное
Публичные лекции
Лекции для школьников
Библиотека «Династии»
Интервью
Опубликовано полностью
В популярных журналах
«В мире науки»
«Знание — сила»
«Квант»
«Квантик»
«Кот Шрёдингера»
«Наука и жизнь»
«Наука из первых рук»
«Популярная механика»
«Потенциал»: Химия. Биология. Медицина
«Потенциал»: Математика. Физика. Информатика
«Природа»
«Троицкий вариант»
«Химия и жизнь»
«Что нового...»
«Экология и жизнь»
Из Книжного клуба
Статьи наших друзей
Статьи лауреатов «Династии»
Выставка
Происхождение жизни
Видеотека
Книжный клуб
Задачи
Масштабы: времена
Детские вопросы
Плакаты
Научный календарь
Наука и право
ЖОБ
Наука в Рунете

Поиск

Архив журнала «Химия и жизнь» за 40 лет!

На 4 CD или 1 DVD





Главная / Библиотека / В популярных журналах / «Химия и жизнь» версия для печати

Академик В. Н. Пармон
«Химия и жизнь» №5, 2005

В космосе

Итак, образование планет Солнечной системы и возникновение жизни на Земле произошли практически в один момент во временных масштабах Вселенной. Поэтому, если бы удалось решить проблему планетообразования, это могло бы стать исходной точкой и для решения проблемы зарождения жизни. Ведь научные вопросы часто решаются комплексно. Но как получить данные о происшедшем событии, если известен лишь конечный результат? Этим занимаются сейчас физики Института катализа и нескольких других институтов СО РАН. Основной инструмент их работы — методы, разработанные для моделирования в лабораторных условиях ядерного взрыва. То есть физики вместе с математиками собирают достаточно надежные данные о каждом процессе, влияющем на картину взрыва, а потом моделируют его на компьютере. Чем мощнее компьютер, чем больше он учитывает процессов и параметров, тем более реальной получается картина. Проверить работу компьютера можно, сопоставив расчеты с наблюдением природных явлений — например, вспышек на Солнце. Естественно, на каждом этапе моделирования надо строго соблюдать все без исключения фундаментальные физические законы, в частности законы сохранения энергии, импульса и т. д.

Сначала сибирские ученые проанализировали наиболее популярные существующие теории образования планет — и остались неудовлетворены. Появилось новое предположение: формирование планет происходило в тех же условиях, в которых каталитические химические реакции органического синтеза. И следующий шаг: именно каталитические реакции привели к возникновению жизни на Земле, а затем — к естественному отбору.

Мы уже давно свыклись с представлением о том, что планеты Солнечной системы зародились из первичного газопылевого облака, окружавшего Протосолнце около 5 млрд лет тому назад. При этом многие ученые предполагали, что планеты Солнечной системы сформировались при столкновении твердых тел. Тем не менее, согласно В. С. Сафронову, если тело величиной порядка тысячи километров столкнется с телом меньшего размера, осколки притянутся к крупному, а вот средние тела (несколько сот километров в диаметре) не могут ни укрупниться, ни поглотиться. Они просто разрушаются при ударе. Что же заставило систему самоорганизоваться и привело к образованию планет земной группы?

Таким механизмом должно быть развитие коллективной неустойчивости, одновременное объединение многих малых тел. Не будем рассматривать в этой статье физическую и математическую часть модели (см. В. Н. Снытников, В. Н. Пармон «Жизнь создает планеты?» — «Наука из первых рук», январь 2004). Скажем только, что модель предполагает формирование солитонов (одиночных волн плотности материи) в околозвездном диске. А мы займемся чистой химией.

Огромное газопылевое облако, вращающееся вокруг Протосолнца, было не просто облаком, а огромным каталитическим реактором, в котором вовсю шли химические реакции и синтезировались разнообразные органические соединения. Почему каталитическим? А потому, что в этом реакторе находились мириады частиц допланетной пыли, содержавшей железо, никель и кремний, — именно они составляли, как полагают, основу первичного газопылевого облака. Там же в избытке находились и газообразные реагенты (основные компоненты межзвездного и межпланетного газа) — водород, угарный газ и т. д. В газопылевом облаке такого состава просто не могли не образовываться органические соединения! Более того, как выяснилось при численном моделировании образования планет, о котором шла речь выше, реакции образования таких соединений были не просто важными, они могли играть решающую роль! Действительно, для слипания твердых частиц «чистой» космической пыли при интенсивном ударе нужен «клей», а образующиеся органические молекулы, закрепляясь на поверхности твердых частиц, образовали необходимый липкий поверхностный слой. Именно он способствовал быстрому соединению пылинок, из которых формировались более крупные частицы, а затем и планетозимали (промежуточные образования) и далее протопланеты. Так, по-видимому, образовались и Земля, и все остальные планеты, астероиды и кометы, которые вращаются сейчас вокруг Солнца.

Надо отметить, что описанная система хорошо знакома специалистам — по классификации химиков-каталитиков глобальный космический реактор относится к разряду реакторов «с псевдоожиженным слоем катализатора». Давление и температура газообразных реагентов в зоне формирования планет были типичными для хорошо известных химических процессов. Другие важные характеристики глобального космического реактора, также близки душе технолога — состав катализаторов, реакционной среды и т. п. Из водорода и угарного газа на железо- и никельсодержащих пылинках были обязаны синтезироваться углеводороды и кислородсодержащая органика — например, простые спирты и альдегиды. Все как в промышленности.

Понятно, что каталитическая активность космического материала — ключевой момент в уточнении теории образования планет. Недавно в Институте катализа мы экспериментально проверили, что вещество реальных метеоритов в самом деле катализирует эти реакции. Каменные и железо-каменные метеориты, которые мы использовали в эксперименте, по своему составу приближаются к веществам, распространенным в космосе. За 4,6 млрд лет своего существования они спеклись и имеют обычную непористую поверхность, но когда-то, в молекулярных облаках и околозвездном диске, межзвездная пыль состояла из частиц нанометрового размера. Поэтому мы испаряли метеориты при помощи лазера и получали порошки с размером частиц 3–4 нм (это примерно соответствует размеру активного компонента в промышленных катализаторах). Затем смотрели, получается ли что-нибудь из смеси угарного газа, водорода и гелия в присутствии метеоритной пыли при атмосферном давлении и температуре до 500°С. В наших экспериментах с достаточно высокими выходами синтезировались этилен и другие углеводороды.

Рис. 2. Схема действия космического каталитического реактора в момент образования Земли

Рис. 2. Схема действия космического каталитического реактора в момент образования Земли

Все это означает, что наши планеты сформировались там, где были условия для каталитического синтеза органических соединений, и что первичные органические соединения, из которых потом могла появиться жизнь, образовались уже на допланетной стадии эволюции Солнечной системы (рис. 2). Интересно, что значительная часть первичного «допланетного» органического вещества могла захватываться при формировании планет (хотя основная масса такого вещества, конечно же, разрушается и развеивается в космосе) и стать впоследствии одним из компонентов ископаемого органического сырья, которым мы сейчас пользуемся. Так это или не так — покажут дальнейшие исследования.

Еще один очень важный вопрос: насколько жестко предопределено образование планет? Оказалось, что самоорганизация вещества по нашей модели идет в одном направлении и поэтому предопределена. Но место появления уединенной волны повышенной плотности вещества, а следом и формирование планеты на данном расстоянии от Солнца — для нашей модели величины случайные. Правда, из общих соображений следует, что если волна плотности окажется на орбите Венеры, то все летучие вещества (вода, водород, органические соединения) там испарятся: планета появится, а жизнь на ней нет. На орбите Марса слишком холодно. Равно как и на орбите Сатурна — недавно выяснилось, что поверхность Титана (спутника Сатурна) состоит в основном из сжиженных легких углеводородов. Планета, на которой живем мы, попала в самую точку. Здесь есть вода, легкие газы и т. п.

Вероятность появления планет на различных расстояниях от Солнца, возможно, определится после дальнейших расчетов, в которых используют дополнительные физико-химические факторы, влияющие на поведение газопылевого облака. Может быть, тогда станет понятно, где проходит граница жизни — до марсианской орбиты или за ней. И это знание сбережет массу средств и сил.


Комментарии (19)


 


при поддержке фонда Дмитрия Зимина - Династия