Газета «Все для учителя», №7, март 2001 г., Украина
Замкнутые линии
…Когда я учился в институте, на одном из занятий заметил, что мой сосед занимается интересным делом — он вместо того, чтобы внимательно слушать преподавателя, настойчиво что-то вырисовывал. В тетради был нарисован прямоугольник, разделенный, на пять более малых (рис.1). Он поставил перед собой задачу провести непрерывную черту так, чтобы она проходила не более одного раза через все отрезки, которые соединяют вершины прямоугольников. Повторил несколько раз, и его попытки остались напрасными. Попробовал и я, иногда казалось — все, решение есть, и при проверке находился отрезок, который не был пересечен, или линия его пересекала дважды. Проходило время. Иногда вспоминалась задача, снова пытался решить, но результата не было.
Решил упростить рисунок, отбросил один отрезок, второй, нарисовал несколько различных фигур. Заметил, что в некоторых случаях непрерывную линию можно замкнуть саму на себя, в некоторых — нет, можно провести не одну замкнутую черту, а несколько (рис.2).
Со временем возникла закономерность.
Задача имеет решение в двух случаях:
1. При обведении отрезков фигуры замкнутыми линиями, все линии будут замкнутыми.
2. При обведении, одна линия останется незамкнутой (то есть ее невозможно замкнуть, не нарушая условия задачи).
Задача не имеет решения, если остается более, чем одна незамкнутая линия.
После такого вывода, замкнутые линии представляются как части непрерывной линии, а концы незамкнутой — как ее концы. Потому, когда появляются две незамкнутых линии, выходит, что мы прервали непрерывную линию, что противоречит условию задачи.
В литературе и в периодических изданиях, где предлагаются задачи на смекалку, встречается много задач данного типа (задачи на прохождение комнат, на обхождение территорий соединенных мостами, рисования фигур одним росчерком). Любую задачу вы можете решить, используя предложенный метод.
Первым, кто к подобным задачам применил математическое обоснование, был великий немецкий ученый Леонардо Эйлер. В 1736 г. он задумался над любопытной задачей: «На реке Прегель, где стоит город Кенигсберг, остров, правый берег, левый и территории соединенные семью мостами. Можно ли пройти по всем семи мостам, не ступив ни на один из них дважды», Эйлер решил задачу, ответ вышел отрицательным.
Докажем возможность использования метода замкнутых линий на выше упомянутой задаче. Для облегчения размышлений введем такие условные обозначения. Пусть A, B, C и D (рис.3) будут различные части суши, разделенные рукавами реки. Переход с места A в место B мы будем помечать через AB — все равно, по какому бы мосту мы не шли, по а или b. Если потом с B мы перейдем в D, то этот путь мы обозначим через ABD, так что здесь B однозначно означает и место пребывание и место отправления.
Перейдем с места A в место B по мосту а, затем вернемся с B в A по мосту b, прошли путь ABA, то есть вернулись в место, с которого начинали. За условием задачи: мосты пересекать разрешено только один раз, следовательно дальше пользоваться ими запрещено, вообразим, что они отсутствуют. Таким же подобным образом поступим с мостами c и d. По какому б из путей ABACA, ACABA, CABAC, BACAB мы не перемещались, во всех случаях возвращаемся на место с которого начинали, образовывая замкнутую линию.
Дальше продолжать движение можно с любого места A, B или C, нужно для этого начинать обход мостов а, b, c, d. (Замкнутой линией можно обвести по два моста а, b и с, d или все четыре). При обходе мостов а, b, c, d путь обозначался, пятью буквами. То есть, если мосты обходить по одному разу, то путь должен обозначатся (n+1), где n — количество пройденных мостов (при прохождении мостов а, b, c — путь обозначался ABAC). Местность D сообщается с местностями C, A, B соответственно мостами g, e, f. Начнем обход с A, то есть запишем ADB, но для обхода моста g, нужно запись дополнить DC, в целом — ADBDC. В записи появляется дополнительная буква, что противоречит условиям, при которых делался обход мостов. То есть, для прохождения моста g, один из мостов (e или f) пересекался дважды, или перешли реку (по воде), что запрещено условием задачи. Следовательно, невозможно пройти по всем семи мостам, не ступив ни на один из них дважды.
Негативный результат получим также при доказывании задачи по рис.1.
При использовании замкнутых линий, получаем не только ответ на вопрос, а наглядно видим очерки будущего пути. Пользуясь данным методом, не нужно блуждать по мостам и комнатам, не нужно знать понятие «графа» и разницу между четными и нечетными числами, нужно понимать условие задачи и хорошо держать в руке карандаш. То есть, младшие школьники смогут не только найти решение задачи и его обосновать, но и составлять их сами, над которыми будут долго думать взрослые.
В.Д. Жила, г. Овруч, Житомирская обл.
Ответить