Что у атома внутри

Валерия Сирота
«Квантик» №11, 2018

Рисунок Марии Усеиновой («Квантик» №11, 2018)

Слово «атом» по-гречески значит ‘неделимый’. Ещё древние греки придумали идею, что всё на свете, как из кирпичиков, сложено из крошечных «кусочков» — атомов. Но это было лишь одно из возможных предположений. Что это за кусочки и существуют ли они, никто не знал до XIX века, когда химики разобрались, что такое молекула, и составили список видов атомов — таблицу химических элементов1.

А в самом конце XIX века вдруг выяснилось, что атом вовсе не неделимый! Он состоит из крошечного тяжёлого ядра и очень лёгких электронов, крутящихся вокруг. Потом оказалось, что и ядро можно разделить на части (хотя и очень трудно!): оно состоит из двух очень похожих видов частиц — протонов и нейтронов. Их массы почти равны, а у электрона масса почти в 2000 раз меньше (соотношение примерно как между человеком и мышкой).

Главное различие между этими частицами в том, что протоны притягивают электроны (и сами к ним притягиваются). А два протона (или два электрона) отталкиваются друг от друга с такой же силой. Эти силы называются электрическими. Нейтроны же вовсе не притягивают электроны, да и между собой и с протонами хоть и взаимодействуют, но совсем по-другому (про это мы скажем чуть ниже): в электрическом взаимодействии они не участвуют.

Договорились считать2, что у протонов положительный электрический заряд, у электронов — отрицательный. А у нейтронов электрический заряд — ноль. Получается правило: одинаковые по знаку заряды отталкиваются, заряды разного знака — притягиваются.

Рисунок Марии Усеиновой («Квантик» №11, 2018)

Не путайте электрическую силу с гравитационным притяжением! В самом деле, все тела, имеющие массу, притягивают друг друга. Но эта сила крошечная даже для таких «средне-тяжёлых» тел, как, например, мы с вами. Большая она только тогда, когда одно из тел очень тяжёлое — звезда, планета или хотя бы астероид. А сила гравитационного притяжения протонов (и тем более протона и электрона) ничтожна.

Электрическая сила, напротив, очень велика: если бы можно было закрепить в каком-то месте протон (и воздух, конечно, убрать), а в трёх сантиметрах над ним поместить другой протон, то второй протон не упал бы вниз, а полетел бы вверх — отталкивание одного протона сильнее гравитационного притяжения всей Земли!

Обычно вещи вокруг нас не имеют электрического заряда — в них столько же электронов, сколько и протонов. Но от некоторых атомов электроны довольно легко отрываются. И вот если отодрать от атомов одного предмета тысячу или миллион-другой электронов и «прицепить» к атомам другого предмета, эти два предмета окажутся заряжены: один — положительно (в нём протонов больше, чем электронов), а другой — отрицательно (в нём лишние электроны). А ведь тысяча протонов, если они рядом, притягивают каждый электрон в тысячу раз сильнее, чем один протон. И начнут эти два предмета притягиваться друг к другу... Случалось вам видеть что-нибудь похожее? Например, когда вы старательно причёсываетесь пластмассовой расчёской, а волосы сами собой поднимаются ей навстречу?

И ещё. В отличие от, например, животных одного вида, которые всё-таки немножко отличаются друг от друга, все протоны (или все нейтроны, или электроны) совершенно одинаковы. Так что, например, электрон, «потерявший» свой атом, уже не сможет найти его среди других таких же...

Задача 1

Взяли две пары маленьких незаряженных шариков. В первой паре от атомов одного шарика «оторвали» 100 электронов и «посадили» их на второй шарик. Во второй паре то же самое сделали с тысячей электронов. Потом шарики в каждой паре разнесли на одно и то же довольно большое расстояние. (Пары далеко друг от друга, гораздо дальше, чем шарики в каждой паре.) Будут ли шарики каждой пары притягиваться или отталкиваться? В какой паре сила их взаимодействия больше и во сколько раз?

Ответ

Шарики каждой пары притягиваются, во второй паре притяжение сильнее в 100 раз. Действительно, во втором случае «без электрона» осталось 1000 протонов, в 10 раз больше, чем в первом. Они притягивают каждый «убежавший» электрон в 10 раз сильнее. Но и «убежавших» электронов во втором случае в 10 раз больше! Значит, суммарная действующая на них сила отличается в 100 раз.

Заметим, что остальные, «неразлучённые» протоны и электроны тоже притягивают или отталкивают каждую заряженную частицу, но их действие скомпенсировано: с какой силой протон притягивает, с такой же электрон рядом с ним отталкивает, или наоборот.

Электрическое притяжение к протонам и держит электроны в атоме, не даёт им улететь. Как мы вскоре убедимся, оно же скрепляет атомы в молекулы. Но не только! Оно же заставляет молекулы одних тел действовать на молекулы других. Если не считать силы гравитационного притяжения, с которой все мы знакомимся с детства (глядя, как падают на пол выпущенные из руки игрушки), все остальные наблюдаемые нами физические явления вызваны как раз электрической силой. Упругость пружины, трение, прилипание разных вещей друг к другу или, наоборот, их взаимное отталкивание — за всё это отвечает взаимодействие электронов одних атомов с ядрами и электронами других.

Но вернёмся к нашим атомам. В нормальной ситуации атом электронейтрален, то есть не имеет заряда: у него электронов столько, сколько протонов в ядре. Если это не так (например, кто-то похитил у атома электрон или атом где-то захватил себе чужой), такой «калечный» атом называется ионом. Тогда он заряжен — положительно, если электронов не хватает, и отрицательно, если есть лишние.

Рисунок Марии Усеиновой («Квантик» №11, 2018)

Протоны притягивают к себе электроны и заставляют их вертеться вокруг ядра, не улетая далеко. А нейтроны в электрическом взаимодействии не участвуют. Зачем же они тогда нужны? Затем, чтобы «склеивать» протоны в ядре — ведь протоны отталкиваются друг от друга электрическими силами, и без нейтронов они бы разлетелись в разные стороны! Силы, которыми нейтроны удерживают протоны вместе, — уже не электрические. Они действуют только на очень маленьких расстояниях — внутри ядра3.

Теперь можно догадаться, чем отличаются друг от друга разные сорта атомов: у них разное количество электронов. И, соответственно, протонов в ядре. Номер элемента в таблице Менделеева (число, написанное крупно в правом верхнем углу каждой клетки) — это число протонов в атомах этого элемента. А как узнать количество нейтронов? По массе атома, ведь массы протонов и нейтронов равны! Например, в атоме водорода — самом маленьком и самом лёгком — всего один протон. А в ядре атома гелия два протона, и при этом атом гелия в 4 раза тяжелее атома водорода. Электроны не в счёт — значит, в ядре гелия 2 нейтрона!

Рисунок Марии Усеиновой («Квантик» №11, 2018)

Масса атома — в единицах массы водорода — написана в каждой клетке внизу4. Легко убедиться, что у нетяжёлых атомов нейтронов примерно столько же, сколько протонов. А у тяжёлых — нейтронов больше: всё труднее становится удерживать всю эту громоздкую конструкцию.

Но почему эта масса нецелая? Не может же, например, у хлора быть 18 с половиной нейтронов? Конечно, нет. Просто это значит, что в природе бывают атомы с 17 электронами, 17 протонами и 18 нейтронами, а бывают такие, у которых электронов и протонов столько же, а число нейтронов отличается. И те и другие — атомы хлора, ведь электронов и протонов столько же. Такие «подвиды» атомов одного вида называют изотопами. В таблице Менделеева написана средняя масса атомов каждого вида (с учётом распространённости их изотопов).

В большинстве клеток средняя масса близка к целому числу. Это значит, что, как правило, в природе больше всего какого-то одного изотопа атомов каждого вида, а атомы с другим количеством нейтронов встречаются не так уж часто. Почти всегда можно не обращать на них внимания и округлять массу до ближайшего целого числа.

Когда хотят уточнить, какой именно изотоп имеется в виду, заряд ядра и его массу пишут прямо рядом с названием элемента: например, \({}^{1}_{1}\mathrm{H}\) — обычный водород; \({}^{2}_{1}\mathrm{H}\) — тяжёлый водород, он же дейтерий; \({}^{3}_{1}\mathrm{H}\) — сверхтяжёлый водород, тритий.

Ну-ка, проверим — всё ли понятно?

Задача 2

Сколько у атома \({}^{12}_{6}\mathrm{C}\) электронов, протонов и нейтронов? А у атома \({}^{23}_{11}\mathrm{Na}\)? А у атома \({}^{197}_{79}\mathrm{Au}\)? У каких атомов 30 нейтронов? (Считаем только основные, самые распространённые изотопы каждого элемента.)

Ответ

\({}^{12}_{6}\mathrm{C}\) — 6 электронов, 6 протонов, 6 нейтронов; \({}^{23}_{11}\mathrm{Na}\) — 11 электронов, 11 протонов, 23−11 = 12 нейтронов; \({}^{197}_{79}\mathrm{Au}\) — 79 электронов, 79 протонов, 197−79 = 118 нейтронов; у марганца \({}^{55}_{25}\mathrm{Mn}\) и железа \({}^{56}_{26}\mathrm{Fe}\).

Задача 3

Если 1 кг воды «расщепить» на кислород и водород, сколько получится граммов газа кислорода?

Ответ

В молекуле воды на каждый атом кислорода приходится 2 атома водорода. Но в атоме кислорода 8 протонов + 8 нейтронов, он весит в 16:2 = 8 раз больше, чем оба эти атома водорода, вместе взятые (в них ведь всего по одному протону). Значит, на атомы кислорода приходится 8/9 всей массы воды. Когда атомы кислорода «отцепятся» от атомов водорода и «слепятся» по два в молекулы кислорода О2, их суммарная масса останется прежней: 8/9 кг.

Задача 4

Во что превратится атом кислорода \({}^{16}_{8}\mathrm{O}\), если добавить в его ядро один нейтрон? А если убрать один протон?

Ответ

Если добавить нейтрон, получится тяжёлый изотоп кислорода, \({}^{17}_{8}\mathrm{O}\). А вот если убрать один протон, получится 7 протонов в ядре — это уже не кислород, а азот, хотя и тяжёлый его изотоп \({}^{15}_{7}\mathrm{N}\). Если при этом ни один электрон не улетит, это будет к тому же отрицательно заряженный ион: электронов больше, чем протонов. Впрочем, появление нового или потеря одного из имеющихся электронов случается с атомами гораздо чаще, чем изменение состава ядра.

Задача 5

У хлора два распространённых изотопа. Более редкий из них имеет 20 нейтронов. Во сколько раз изотопов хлора-37 в природе меньше, чем изотопов хлора-35?

Ответ

Если бы был только изотоп \({}^{35}_{17}\mathrm{Cl}\), масса всех атомов составляла бы 35 масс протона (или нейтрона). В среднем, как мы видели из таблицы Менделеева, на каждый атом хлора приходится примерно 35,5, то есть 0,5 «лишних» нейтрона. А в каждом атоме тяжёлого изотопа \({}^{37}_{17}\mathrm{Cl}\) два лишних нейтрона. Значит, чтобы в среднем была половина, тяжёлым должен быть каждый четвёртый атом.

(Более аккуратный подсчёт по указанному в таблице значению средней массы, (35,45−35):2 = 0,225, не даёт более точной оценки — ведь есть ещё другие изотопы хлора. Хоть их и совсем мало, но точнее сосчитать они помешают.)

Итак, изотоп \({}^{37}_{17}\mathrm{Cl}\) составляет около 1/4 всего имеющегося в природе хлора, а \({}^{35}_{17}\mathrm{Cl}\) — остальные 3/4. Поэтому изотопа \({}^{37}_{17}\mathrm{Cl}\) в 3 раза меньше.

Контрольная задача

Есть 3 списка: 1) азот, никель, алюминий, железо, медь, гелий; 2) вода, метан, поваренная соль, спирт, сахар, аспирин; 3) дерево, воздух, бумага, нефть, водка, гранит. Что общего в материалах внутри каждого списка и в чём отличие списков друг от друга? По какому принципу собраны эти списки?

Ответ

В первом списке молекулы состоят из одинаковых атомов (атомов только одного вида); во втором — каждая молекула состоит из разных атомов, но все молекулы одинаковы. В третьем — вещества состоят из смеси молекул разных видов.

Рисунок Марии Усеиновой («Квантик» №11, 2018)

Художник Мария Усеинова


1 А разобрались ли вы? Для проверки и чтобы понять, как непросто было до всего этого догадаться, предлагаем вам решить «контрольную задачу» в конце статьи.

2 Вообще-то, когда договаривались, про электроны и протоны ещё ничего не знали — это было лет за 150 до их открытия. Тогда положительным назвали заряд, который получается на стекле, если его потереть шёлковой тряпочкой. Теперь мы знаем, что электроны со стекла «убегают» на шёлк.

3 Зато на этих маленьких расстояниях они очень большие — надо ведь «победить» электрическое отталкивание! Поэтому они так и называются — «сильные силы» (strong force), сильное взаимодействие.

4 Тут мы чуть-чуть обманываем читателя, но это не беда: дальше придётся обманывать ещё сильнее...


6
Показать комментарии (6)
Свернуть комментарии (6)

  • kbob  | 31.08.2019 | 06:04 Ответить
    Уже 118 элементов открыли
    Ответить
  • nazarov_nsa  | 01.09.2019 | 13:09 Ответить
    К сожалению, в представленной периодической таблице не указаны атомные массы элементов. Поэтому для решения задачи 5 не достаточно начальных данных.
    Ответить
  • эцих_с_гвоздями  | 01.09.2019 | 23:33 Ответить
    "Задача 3
    Если 1 кг воды «расщепить» на кислород и водород, сколько получится граммов газа кислорода?

    Ответ:
    На массу кислорода приходится 8/9 массы воды."

    Конец цитаты.

    Теперь, внимание, вопрос: у вас там в голове все нормально? Задача про 1 кг, а в ответе 0.9 кг. Это что, ответ на вопрос, который никто не задавал? Или с дробями сложно? А зачем задавали вопрос такой?

    Просто эталонная дурость.
    Ответить
  • pricot11  | 30.09.2019 | 18:15 Ответить
    Цитата -
    11Н — обычный водород; 21Н — тяжёлый водород, он же дейтерий; 13Н — сверхтяжёлый водород, тритий.
    - У трития перед "Н" вверху д.б "3" а "1" внизу как на последнем рис. Марины Усеиновой. И не лучше ли было бы использовать таблицу Менделеева с указанием относительной атомной массы элементов. А так всё толково.
    Ответить
    • editor > pricot11 | 30.09.2019 | 20:26 Ответить
      Спасибо, индексы исправили.
      Ответить
  • Геля  | 03.07.2024 | 13:45 Ответить
    Спасибо! Очень интересная статья!
    Ответить
Написать комментарий

Избранное







Другие публикации


Элементы

© 2005–2025 «Элементы»