У больших животных гены длиннее

Китовые акулы обычно медленно плавают

Рис. 1. Китовые акулы обычно медленно плавают с открытой пастью, чтобы отфильтровывать планктон — свою основную пищу. Из-за своих размеров они не боятся людей и не обращают на попутчиков особого внимания. Фото с сайта thegardenisland.com

Международная группа ученых расшифровала геном китовой акулы и сравнила его с геномами 84 других организмов. Тщательный анализ разных характеристик генетического кода выявил ряд зависимостей между параметрами генома и биологическими особенностями организмов. Оказалось, что увеличенная продолжительность жизни положительно коррелирует с размерами тела и уровнем метаболизма, длина интронов и длина генома положительно скоррелированы с массой тела, а содержание гуанина и цитозина обратно пропорционально индексу адаптации кодонов.

Китовые акулы (Rhincodon typus) — самые крупные современные рыбы. Длина самого крупного экземпляра, замерам которого можно верить, достигал 18,8 м в длину (C. R. McClain et al., 2015. Sizing ocean giants: patterns of intraspecific size variation in marine megafauna). Регулярно встречаются сообщения и о более крупных особях, но их достоверность вызывает сомнения. По размерам китовые акулы вполне сравнимы с кашалотов, а крупнее них из современных животных только синие киты. Название китовых акул отражает не только исполинские размеры взрослых особей, но и крайне редкий для акул способ питания. Эти рыбы, как и усатые киты, — фильтраторы, они питаются планктоном. В отличие от китов, фильтрующих воду через растущий на верхнем нёбе китовый ус, акулы фильтруют воду через жаберные щели, прикрытые специальными хрящевыми пластинками и кожными зубцами. Среди акул такую пищевую стратегию используют еще лишь два вида: гигантская и большеротая акулы.

Численность китовой акулы неизвестна, но по некоторым оценкам она сейчас составляет лишь 1–2 тысячи особей. Раньше мясо этой рыбы употреблялось в пищу, а медлительность и размеры делали ее хорошей целью для рыбаков. Несмотря на введенный запрет промысла, восстановление численности китовой акулы идет крайне медленно.

Как правило, закономерности эволюции в царстве животных выявляются и исследуются на основе данных по очень небольшому числу видов, представителей которых удобно содержать в лаборатории (см., например, список модельных объектов в биологии). Также желательно, чтобы животные были многочисленными, не слишком прихотливыми, легко разводились и обладали высокой скоростью смены поколений. Китовые акулы всеми этими качествами, разумеется, не обладают, хотя данные по ним и другим обособленным с эволюционной точки зрения видам (а китовая акула — единственный вид в семействе Rhincodontidae) тоже крайне важны для ученых. При этом до недавних пор даже не был расшифрован геном китовой акулы.

Этот пробел в недавней статье удалось заполнить большой международной группе исследователей из научных учреждений Кореи, США, и Великобритании. Ученые отсеквенировали геном семилетнего самца китовой акулы, содержавшегося в корейском океанариуме и погибшего своей смертью. Затем эту расшифрованную генетическую последовательность сравнили с уже известными геномами 84 других организмов — одного вида дрожжей, нескольких видов беспозвоночных, а также с геномами разных рыб, птиц и млекопитающих.

Одна из важных генетических характеристик — доля гуанин-цитозиновых (GC) пар азотистых оснований в ДНК (см. GC-состав). Гуанин и цитозин — это комплементарные (то есть они могут располагаться друг напротив друга) составные части ДНК, две из четырех возможных «букв» нашего генетического кода. Встречаемость пар двух других азотистых оснований (аденина и тимина) можно получить, если вычесть долю пары GC из единицы. Оказалось, что на 42% геном китовой акулы состоит из пар GC.

То, насколько часто пара GC встречается в генетическом коде, зависит от ряда факторов. Например, от того, какая буква чаще стоит в конце триплета, кодирующего аминокислоту будущего белка. Дело в том, что вдоль одной молекулы ДНК (без комплементарной цепочки) буквы расположены по три и образуют из себя «слова» — триплеты (или кодоны). Всего таких слов из четырех букв можно составить 43 = 64 штуки. При этом в генетическом коде встречается всего 20 аминокислот. Добавим сюда еще стоп-кодон, сигнализирующий об остановке считывания. Выходит, что на 21 значение есть 64 слова. Поэтому генетический код, как говорят, вырожден: разные триплеты могут кодировать одну и ту же аминокислоту. Но распределение триплетов по аминокислотам вовсе не равномерное: какие-то кодируются только одним триплетом (метионин и триптофан), а какие-то — аж шестью (аргинин, лейцин, серин). Кроме того, неравномерно и использование триплетов, кодирующих одну и ту же аминокислоту. То есть, например, среди кодирующих серин триплетов одни встречаются в живой природе гораздо чаще других. Это явление называют предпочтением кодонов. Как правило, кодирующие одну и ту же аминокислоту триплеты, отличаются на последнюю букву, а предпочтение кодонов с ходом эволюции смещается в сторону преобладания пары GC (рис. 2). Долю, которую пары GC занимают в третьем положении кодонов, далее по тексту будем обозначать GC3.

Рис. 2. Изменение значения параметра GC3

Рис. 2. Изменение значения параметра GC3 (в процентах, горизонтальная ось) в генах у 33 видов плацентарных животных. Гены разбиты на пять групп (обозначенных разными цветами), исходя из соотношения между значением GC3 и средним отличием этого значения от доли GC3 у общего предка всех плацентарных. Видно, что наибольшие отличия от предковой формы в содержании гуанина и цитозина в третьем положении обусловлены именно увеличением GC3. Рисунок из статьи J. Romiguier et al., 2010. Contrasting GC-content dynamics across 33 mammalian genomes: Relationship with life-history traits and chromosome sizes

В обсуждаемой работе показано, что доли GC и GC3 в генах 85 исследованных видов положительно скоррелированы друг с другом. Однако оба этих показателя неожиданно оказались обратно пропорциональны индексу адаптации кодонов (codon adaptation index, CAI, рис. 3). Этот индекс позволяет оценить, какими вариантами триплетов в среднем представлен данный ген: частыми или редкими. Получается, что если в гене большое количество более предпочитаемых триплетов, заканчивающихся на GC, то это вовсе не повышает среднее предпочтение кодонов в гене, а наоборот снижает его.

Рис. 3. Обратная корреляция между значениями GC и GC3

Рис. 3. Обратная корреляция между значениями GC (левый график) и GC3 (правый график) и индексом адаптации кодонов (отложен по горизонтальной оси) по геномам 85 видов организмов. Графики из обсуждаемой статьи в PNAS

Ранее было показано, что скорость замещения азотистых оснований обратно пропорциональна весу тела (рис. 4, слева), то есть у мелких животных скорость эволюции выше, чем у крупных (см. новость Крупным млекопитающим может грозить вымирание из-за накопления вредных мутаций, «Элементы», 28.08.2007). При наличии тенденции к смещению в сторону преобладания пар GC в третьем положении в кодонах (см. рис. 2) логично было бы ожидать, что в ходе обсуждаемого исследования выяснится, что значение GC3 в геноме также обратно пропорционально массе тела (рис. 4, справа).

Рис. 4. Зависимость скорости накопления изменений в мДНК от размеров

Рис. 4. Слева — зависимость скорости накопления изменений в митохондриальной ДНК (вертикальная ось, процент изменения мДНК за миллион лет) от размеров (горизонтальная ось, масса тела в кг) у теплокровных животных (верхняя линия) и холоднокровных животных (нижняя линия). График из статьи A. P. Martin, S. R. Palumbi, 1993. Body size, metabolic rate, generation time, and the molecular clock. Справа — зависимость доли GC3 (указана в процентах, вертикальная ось) в геноме 33 млекопитающих от массы их тела (по горизонтальной оси откладывается десятичный логарифм массы тела в кг). График из статьи J. Romiguier et al., 2010. Contrasting GC-content dynamics across 33 mammalian genomes: Relationship with life-history traits and chromosome sizes

Однако проведенное в обсуждаемой работе полногеномное исследование 85 видов организмов не выявило такой взаимосвязи: получилось, что содержание ГЦ3 не коррелирует ни с размерами тела, ни с продолжительностью жизни.

На левой части рис. 4 стоит обратить внимание на то, что хладнокровные животные имеют заметно более низкую скорость накопления изменений в мДНК по сравнению с теплокровными животными тех же размеров. Вероятно, здесь играет роль скорость метаболизма, во время которого высвобождаются способные повреждать ДНК активные формы кислорода.

Интересно, что и базальная скорость метаболизма (см. Basal metabolic rate), и продолжительность жизни оказались в прямой зависимости от веса животного (рис. 5). Значит, размеры тела животного и его температура позволяют предсказать уровень метаболизма, а также продолжительность жизни. Китовые акулы обитают в основном в тропических регионах, где температура воды не опускается ниже 21 °С, а благодаря своим габаритам они не успевают остывать при нырянии на большие глубины в поисках пищи. Продолжительность жизни китовой акулы составляет до 80 лет.

Рис. 5. Зависимость между весом тела и базальной скоростью метаболизма

Рис. 5. Слева — зависимость между весом тела (вертикальная ось) и базальной скоростью метаболизма (горизонтальная ось). Справа — зависимость между максимальной продолжительностью жизни (вертикальная ось) и весом (горизонтальная ось). Графики из обсуждаемой статьи в PNAS и дополнительных материалов к ней

Кроме того, с размерами тела животного оказались положительно скоррелированы и такие показатели, как размер генома и относительная длина интронов (некодирующих участков ДНК, рис. 6). Оказалось, что в среднем чем больше организм, тем больше у него геном и тем больше у него интроны. Сходная взаимосвязь показана и для продолжительности жизни и уровня метаболизма, которые как уже говорилось, скоррелированы с размерами тела. Выходит, что у более долгоживущих животных длиннее и гены, и геномы в целом.

Рис. 6. Зависимость между размерами тела и длиной интронов

Рис. 6. Слева — зависимость между размерами тела (вертикальная ось) и длиной интронов (горизонтальная ось). Справа — зависимость между размером генома (вертикальная ось) и размером тела (горизонтальная ось). Графики из обсуждаемой статьи в PNAS

Исследователи задались вопросом, за счет чего геном китовой акулы значительно больше, чем у более мелких животных. Было показано, что длина экзонов (кодирующие части ДНК) — очень консервативный признак. Большинство генов также имеют сходную длину у всех 85 рассмотренных видов. Исключение составляют гены, связанные с нервными контактами, — эти гены заметно длиннее, чем в среднем гены организма. И как раз у долгоживущих организмов некоторые из генов, связанных с нервной системой, заметно длиннее среднего показателя.

Но не за счет же одних генов нервной системы геном китовой акулы составил 3,2 млрд п. о., что сравнимо с длиной человеческого генома. Выяснилось, что 50% акульего генома составляют участки ДНК, способные к передвижению и размножению в пределах генома — так называемые транспозоны. Из всех рассмотренных видов китовая акула на четвертом месте по длине повторяющихся элементов ДНК после японской кошачьей акулы, коричневополосой кошачьей акулы и опоссума. Именно они и удлиняют ее геном. В чем заключается эволюционный смысл такого способа удлинения генома — пока неясно.

Также было показано, что гены китовой акулы в большинстве своем (58%) являются древними (старше 684 млн лет). Очень немного (5,4%) генов имеют возраст 684–199 млн лет. Еще меньше — всего 2% — «молодых» генов (возрастом 199–93 млн лет). Но при этом в ее геноме больше трети (34,6%) совсем новых генов, возраст которых составляет 93 и менее млн лет. Тем не менее, среди всех исследованных животных китовая акула оказалась самой медленно эволюционирующим видом.

Обсуждаемая работа не только демонстрирует важность большой выборки как генов, так и организмов, но и показывает ряд неожиданных корреляций, которые еще только предстоит объяснить. Например, почему масса тела, продолжительность жизни и длина генома скоррелированы? Неужели наличие большого количества повторов в генах позволяет увеличить продолжительность жизни? Вряд ли все так просто. Остается только продолжать исследования и расширять выборку геномов.

Источник: Jessica A. Weber, Seung Gu Park, Victor Luria, Sungwon Jeon, Hak-Min Kim, Yeonsu Jeon, Youngjune Bhak, Je Hun Jun, Sang Wha Kim, Won Hee Hong, Semin Lee, Yun Sung Cho, Amir Karger, John W. Cain, Andrea Manica, Soonok Kim, Jae-Hoon Kim, Jeremy S. Edwards, Jong Bhak, and George M. Church. The whale shark genome reveals how genomic and physiological properties scale with body size // Proceedings of the National Academy of Sciences. 2020. DOI: 10.1073/pnas.1922576117.

Алёна Сухопутова


7
Показать комментарии (7)
Свернуть комментарии (7)

  • Kostja  | 18.09.2020 | 13:50 Ответить
    Классное название у статьи.

    Где-то на картах гугла видел очень-очень аномально большую акулу четко видимую, хотя конечно может там масштаб был неправильный.
    Ответить
  • Helltorn  | 18.09.2020 | 17:50 Ответить
    Китовые акулы - реликты похоже ещё докембрийского мира. У них можно было бы спросить почему вымерли не только ихтиозавры, но даже трилобиты. Китовые акулы видели это своими глазами и у них можно узнать правду. Однако нужно поторопиться, так как они заявили о своем желании в ближайшие годы ВЫМИРАТЬ. Судя по слухам Китовые акулы отказываются жить рядом с такими Дураками как Вы даже на одной Планете!!!
    Такого вымирания видов как сейчас пожалуй не было в истории Земли и это первый случай когда все легко объяснимо....
    Ответить
    • Rattus > Helltorn | 19.09.2020 | 13:04 Ответить
      Китовые акулы - реликты похоже ещё докембрийского мира.
      ЩИТО?
      Такого вымирания видов как сейчас пожалуй не было в истории Земли
      Если не знать про Пермь-Триасовое.
      Ответить
      • Helltorn > Rattus | 19.09.2020 | 16:02 Ответить
        Пермское вымирание длилось не меньше 5 млн лет, а Кайнозойской в четвертичном периоде не более 20 тыс лет, а результаты уже сопоставимые. Большинство людей даже не в курсе, а те кто знает помалкивает (чтоб никого не обидеть):)))
        Зато есть и хорошие новости:
        Через 20 млн лет Учёные буду точно знать, что причиной Четвертичного вымирания было только ЛИЦЕМЕРИЕ...
        Правда сами Учёные будут представителями другой эволюционной ветви и ещё не факт что ТЕПЛОКРОВНЫЕ!
        Ответить
        • Александр Гор > Helltorn | 20.09.2020 | 11:45 Ответить
          Сопоставимые?
          Ок, какие отряды или классы вымерли в Кайнозойское "вымирание"?
          Где вымирание 96% морских видов? Сколько % морских видов вымерли в Кайнозойское "вымирание"?
          Ответить
  • dro  | 20.09.2020 | 16:02 Ответить
    замечательный пример статьи ни о чем. нашли какие-то корреляции, "которые еще только предстоит объяснить", и это "демонстрирует важность большой выборки как генов, так и организмов". странно, что подобное вообще опубликовали в ПНАСе. Рис. 6 - классический пример того, как корреляция, даже статистически достоверная, целиком основана на артефакте выбора. Сухопутова поленилась написать в легенде, но точки разного цвета соответствуют разным группам позвоночных. голубые, вероятно, хрящевые рыбы, синие - костистые рыбы, коричневые - млекопитающе, которые суть экзотическая разновидность костистых рыб. Из графика видно, что вся корреляция объясняется различием между этими группами: у хрящевых рыб интроны самые длинные, у тетраподов короче, у остальных костистых рыб еще короче. и совершенно незачем приплетать сюда логарифм веса, без него корреляция станет только нагляднее. кстати, с этим графиком Сухопутова допустила еще одну небрежность - забыла указать, что длина интронов по оси Х относительная, не понятно только относительно чего ее рассчитывали.
    Ответить
  • Helltorn  | 22.09.2020 | 01:41 Ответить
    Российский менталитет - это уникальное явление, достойное внимательного изучения Научного сообщества!
    С одной стороны население имеет повышенную склонность ДОВЕРЯТЬ мошенникам, прощелыгам, фальсификаторам и т.д, но при этом любые попытки отдельного Гражданина (например Сухопутовой) высказать свое виденье, альтернативную теорию, вольную трактовку и т.д - вызывает у окружающих неприятие, агрессию и недоверие...
    Шаблонезированность мышления и безальтернативность в восприятии - наша национальная черта и предмет ГОРДОСТИ!!!
    На мой взгляд именно это формирует туннельную интеллектуальную среду и в долгосрочной перспективе ограничивает национальное развитие!
    Ответить
Написать комментарий

Последние новости


2226 проанализированных языков из базы данных Grambank на карте мира
Не все языковые универсалии оказались универсальными

Манипулоникс, возможно, был специалистом по похищению и поеданию яиц более крупных динозавров
Не того динозавра назвали овираптором

Хотя традиционно динозавров-зауроподов изображают однотонными, как современных крупных млекопитающих вроде слонов и носорогов, на деле они могли быть довольно пестрыми
Диплодоки были пятнистыми или полосатыми

Гиппокамп
Найдены причины потери социальной памяти при болезни Альцгеймера

Элементы

© 2005–2026 «Элементы»