Алексей Левин
«Популярная механика» №3, 2006

Узники 3-браны

Это обстоятельство очень важно. Обычно пишут, что мы не ощущаем присутствия шести или семи дополнительных пространственных измерений из-за того, что они свернуты в ультрамикроскопические клубки (компактифицированы), которые все наши измерительные инструменты, от микроскопов до сверхмощных ускорителей, не отличают от геометрических точек. Такая интерпретация стандартна, но не обязательна: электроны, кварки и прочие частицы материи представлены струнами со свободными концами. Это справедливо и в отношении переносчиков электромагнитного взаимодействия (фотонов), сильного (глюонов) и слабого (W- и Z-бозонов). Если пространство нашей Вселенной — это 3-брана (что правдоподобно) и если все «наши» частицы укоренены в ней обоими концами, они не могут ее покинуть и уйти в другие многообразия. Выходит, что мы заперты в своем пространстве не из-за того, что из него некуда выйти, а потому, что оно нас от себя не отпускает. У пленников замка Иф шансов на побег было побольше...

Однако шансы прощупать высшие измерения все же имеются. Гравитоны — это закольцованные струны, и потому бранные границы им не помеха. Они могут покидать нашу 3-брану и уходить в другие измерения. Но если переносчики гравитации способны на это, то сила тяготения должна убывать с увеличением расстояния не по ньютоновскому закону обратных квадратов, а гораздо быстрее! То, что мы этого не замечаем, может свидетельствовать о компактификации дополнительных измерений, что всегда принимала «до-брановская» теория суперструн. В этом случае отклонения от ньютоновской формулы должны проявляться лишь на очень малых дистанциях. Пока что она проверена с точностью до 0,1 мм и аберраций не обнаружено. Так что можно предположить, что масштаб высших измерений значительно меньше. Однако есть и другие интерпретации. Семь лет назад гарвардский теоретик Лиза Рандалл и ее коллега Раман Сандрум пришли к выводу, что наша 3-брана в состоянии удерживать гравитоны своим собственным притяжением. Если это так, то внешние измерения могут быть хоть бесконечно большими, а закон Ньютона все равно будет выполняться на любых дистанциях.

Перспективы

Из струнной модели выводится и вся классическая релятивистская теория тяготения, общая теория относительности изображение с сайта www.popmech.ru)
Из струнной модели выводится и вся классическая релятивистская теория тяготения, общая теория относительности

В рамках М-теории выполнены работы, которые привели к переоценке протяженности струн. Несколько теоретиков пришли к выводу, что верхний предел длин невозбужденных струн составляет не 10–33 см, а «всего лишь» 10–16 см. Конечно, и эта величина весьма мала даже по стандартам мира элементарных частиц, но в конце концов она только тысячекратно уступает размеру протона. Такая оценка увеличивает шансы обнаружить проявления струнной природы частиц в экспериментах на ускорителях следующего поколения.

Из струнной модели выводится и вся классическая релятивистская теория тяготения, общая теория относительности. Виттен как-то заметил, что, если бы ОТО не создал Эйнштейн, она вполне могла бы появиться как побочный продукт теории суперструн. А в 2003 году Андрей Линде и его коллеги получили еще один сильный результат: они показали, что теория струн дает возможность ввести в эйнштейновское уравнение энергию физического вакуума, плотность которой лишь очень ненамного превышает нуль. Добавка этого слагаемого позволяет объяснить увеличение скорости расширения Вселенной, которое было открыто в прошлом десятилетии.

О перспективах струнной теории «Популярной механике» рассказал Андрей Линде, профессор Стэнфордского университета и наш соотечественник: «Теория суперструн сама по себе является замечательным интеллектуальным достижением. За последние 20 лет это самое лучшее, что люди смогли сделать в области фундаментальной теоретической физики. С другой стороны, она до сих пор не может предъявить ни одного экспериментального результата, который бы из нее следовал. Дело в том, что ее основные черты относятся к энергиям, которые на ныне действующих ускорителях труднодоступны. Сейчас в Женеве строят новый ускоритель, Большой адронный коллайдер (LHC — Large Hadron Collider). Может быть, на нем обнаружат что-нибудь тесно связанное с теорией суперструн, например суперпартнеров обычных частиц. Если это произойдет, теория получит сильное подспорье. Если нет, это многих обескуражит. Некоторые боятся, что такая прекрасная сама по себе теория будет выглядеть как великолепная математика, неизвестно каким образом связанная с физикой. Но у теории струн столько интереснейших интеллектуальных возможностей, что ею всё равно будут заниматься».


2
Показать комментарии (2)
Свернуть комментарии (2)

  • spark  | 28.04.2006 | 18:20 Ответить
    Надо бы поправить длины: вместо 10-33 см надо 10^(-33) см и т.д. А то неискушенная публика может действительно подумать про струны в 10 см.

    А вообще статья оставляет привкус, скажем так, несвоевременности. Все эти вещи давным давно описаны в том числе и в популярной литературе. Взять хотя бы "Официальный сайт теории суперструн": http://www.astronet.ru/db/msg/1199352 . Гораздо интереснее было бы поговорить именно про последние проблемы и достижения.
    Ответить
  • Лена  | 26.06.2011 | 16:22 Ответить
    Очень разумный подход!
    Ответить
Написать комментарий
Элементы

© 2005–2025 «Элементы»