На великолепном снимке Ивана Тимошенко и Павла Швеца запечатлены первые секунды после старта 7 февраля 2020 года с космодрома Байконур ракеты-носителя «Союз-2.1Б», которая вывела на орбиту очередную порцию спутников проекта OneWeb. На фото мы видим первую ступень трехступенчатой ракеты с работающими жидкостными ракетными двигателями РД-107 (в четырех боковых блоках) и РД-108 (в центральном блоке). Тридцать два сопла порождают завораживающе красивую картину истечения реактивных струй. Как устроены эти струи и почему они имеют такую сложную форму?
В ракетном двигателе топливо, сжигаемое в камере сгорания, превращается в очень горячий сжатый газ, который вылетает через сопло, создавая реактивную силу тяги. В жидкостных ракетных двигателях горючее и окислитель (топливная пара) подаются под большим давлением в форсунки, расположенные в начале камеры сгорания. Смешивая компоненты, форсунки распыляют топливо в камеру сгорания, где в процессе горения происходит преобразование запасенной в топливе химической энергии в энергию сжатия и тепла. Получившийся раскаленный газ устремляется в реактивное сопло. Сужающаяся дозвуковая часть сопла ускоряет поток, и в самой узкой части сопла — критическом сечении — он приобретает скорость звука. Далее поток оказывается в расширяющейся части, становится сверхзвуковым и продолжает разгоняться до самого среза сопла. Истечение этой струи порождает реактивную силу в обратном направлении: она составляет основную часть силы тяги двигателя. Тяга всех двигателей складывается в тягу ступени, разгоняющую ракету. Двигатели РД-107 имеют четыре основные камеры сгорания и две небольшие рулевые камеры, у центрального РД-108 четыре основные и четыре рулевые камеры. Горючим для них служит керосин, а окислителем — жидкий кислород.
Итак, из сопел ракетного двигателя вырываются раскаленные газовые струи. Но что именно мы видим как языки яркого пламени? Кажется, что они вылетают изнутри сопел, но это не так: пламя возникает только на срезе сопла, и чуть ниже мы разберемся, как это происходит. Вообще, такое яркое пламя наблюдается только на Земле (точнее, в кислородной атмосфере). Если бы можно было посмотреть на старт аналогичной ракеты с любого другого тела Солнечной системы, то были бы видны только бледные тусклые струи — и никакого слепящего огня. Всё дело в догорании в земной атмосфере остатков керосина и сажи, образовавшейся в камере сгорания.
Большинство форсунок камеры сгорания двухкомпонентные — в них одновременно поступают и керосин, и кислород. Они образуют девять плотных концентрических кругов, чтобы сжигать как можно больше топлива в единицу времени (а чем больше расход топлива в ракетном двигателе, тем выше его тяга). А вот форсунки самого внешнего, десятого, круга — однокомпонентные, в них подается только керосин. Распыляя его вдоль стенки камеры сгорания, форсунки создают защитную газожидкостную пленку, снижающую температуру и защищающую тем самым стенку от прогорания. Распыленному периферийными форсунками керосину не хватает кислорода, поэтому он сгорает не полностью, а частично испаряется или термически разлагается до чистого углерода. Эти керосиновые пары и углеродная сажа образуют периферийный слой «выхлопной» струи, который обогащен горючими веществами. Поскольку температура струи на выходе из сопла составляет около 1700°C, при доступе к атмосферному кислороду в этом слое начинается горение — его мы и видим как яркие желтые языки пламени. Во внутренней же части струи керосин, сгорающий с достаточным количеством кислорода, в конечном итоге разлагается на невидимые в раскаленном состоянии водяной пар и углекислый газ. Получается, что выхлопная струя ракетного двигателя светит только своей поверхностью.
Но почему поверхность струи светится не равномерно? На ней явно видны яркие полосы и тонкие волокна, разделенные темными «щелями». Атмосферный воздух, затягиваемый движением струи, подсасывается к срезу сопла не ровным и плавным боковым течением. Напротив, он устремляется к кромке сопла с такой силой, что закручивается в многочисленные отдельные вихри, которые усиливают приток кислорода в местах встречи с краем сопла. Сгорание в этих местах становится более интенсивным и ярким, а огромная скорость струи растягивает пятна усиленного горения в почти ровные яркие полосы.
Старт ракеты-носителя «Союз-2.1А» с транспортным грузовым кораблем «Прогресс МС-11» в качестве полезной нагрузки 4 апреля 2019 года. Хорошо заметны яркие продольные полосы на истекающей из сопел струе. Также видно, что сама струя на выходе из сопла прозрачная — почти везде можно без труда разглядеть дальнюю кромку сопла. Фото с сайта roscosmos.ru
Хорошо заметно, что сразу после выхода из сопла струи начинают сужаться. Это значит, что струя выходит наружу перерасширенной. Двигаясь в сверхзвуковой части реактивного сопла, поток газа расширяется и разгоняется, но при этом падают его температура и давление. Расширение сильное, в 19 раз (степень расширения — это отношение площади среза сопла к площади критического сечения). Из-за этого давление на срезе сопла составляет около 0,4 атм, и окружающий воздух (у которого давление равно 1 атм) обжимает струю, сужая ее.
На высоте около десяти километров давление на срезе сопла сравняется с атмосферным и струя станет выходить ровно, строго цилиндрически. Это расчетный режим истечения, оптимальный с точки зрения газодинамики, поскольку нет ни стартового перерасширения (при котором атмосфера создает на срезе сопла встречный потоку перепад давления, противодействующий истечению), ни высотного недорасширения. Недорасширение начнется на больших высотах: там атмосферное давление еще ниже, поэтому давление струи на срезе сопла станет больше атмосферного. Из-за этого она продолжит расширяться за соплом, но полезную работу без контакта со стенкой сопла совершать уже не будет.
Из-за перерасширения струя после выхода из сопла имеет форму перевернутого усеченного конуса. В самом узком месте видно яркое поперечное кольцо, после которого струя снова расширяется. На третьем фото можно насчитать по несколько таких ярких колец и циклов сужения-расширения. Эти кольца — диски Маха — представляют собой ударно-волновые уплотнения в истекающей струе, вызванные взаимодействием с атмосферным воздухом. При сужении сверхзвуковая струя тормозится, в ней возникает прямой скачок уплотнения. Важно подчеркнуть, что это торможение не связано с трением об окружающий воздух: здесь происходит геометрическое сужение течения и чисто газодинамическое торможение сверхзвукового потока в сужающемся канале. Из-за сжатия газ разогревается, что усиливает сгорание остатков горючего, — это и приводит к локальному усилению яркости струи. Области повышенной яркости имеют кольцевую форму из-за сочетания уже описанных эффектов: остатки керосина и сажа по-прежнему сосредоточены на периферии «выхлопной» струи, туда же подмешивается больше всего атмосферного кислорода, там происходит дополнительный нагрев из-за скачка уплотнения.
Старт ракеты-носителя «Союз-ФГ» с транспортным пилотируемым кораблем «Союз МС-13», который доставил на МКС Александра Скворцова, Луку Пармитано и Эндрю Моргана. Хорошо видны многочисленные диски Маха в каждой из струй. Также при таком ракурсе видно, что в дисках Маха светится именно периферийный кольцевой слой. Фото с сайта roscosmos.ru
При сжатии струи в прямом скачке уплотнения давление увеличивается и может слегка превысить атмосферное. Тогда за диском Маха струя немного расширяется, при этом разгоняясь. Расширение переходит в перерасширение, вызывающее сужение потока и формирование нового диска Маха. Этот циклический процесс порождает цепочку сужений. На каждом из них происходит небольшая потеря энергии, и в целом струя постепенно замедляется. Но из-за того, что на выходе из сопла скорость струи в несколько раз превышает скорость звука, успевает сформироваться целая серия дисков Маха. Они возникают до тех пор, пока потеря скорости в уплотнениях и рассеивание энергии поверхностью струи не замедлят ее до дозвукового течения и турбулентного перемешивания с окружающим воздухом.
Таким образом, находясь внутри сопла струя всё время ускоряется, а после выхода из него она тормозится атмосферой. На срезе сопла скорость струи достигает 3 км/с. Это соответствует значению числа Маха около 3 — из-за высокой температуры скорость звука в этих условиях равна примерно 1 км/с. При диаметре основных сопел 0,7 метра расстояние до первого сужения струи — примерно метр. Поток преодолевает его за 0,0003 секунды.
Если присмотреться (лучше всего смотреть на увеличенные версии первой и второй фотографий), то можно заметить, что светлые полосы и волокна на реактивных струях не идеально ровные: на них есть небольшие искривления, утолщения и неровности. Прикидки расстояний в предыдущем абзаце помогают оценить, что характерная длина этих искривлений — дециметры. Это значит, что время их существования (то есть время прохождения их длины потоком) имеет порядок 0,0001 секунды. Они всё время возникают вновь, поэтому можно считать, что это периодический процесс с частотой 10 кГц (10 000 раз в секунду). Он происходит на поверхности сверхзвуковых потоков большой мощности с непростой формой — всё это создает сложную резонансную картину высокочастотного акустического излучения и звукового давления. От нее не только можно оглохнуть — этот звук настолько мощен, что даже массивные ферменные конструкции старта сотрясаются плотной частой дрожью. Ну а нам повезло, и за уши можно не волноваться — звук к тексту не прилагается, но зато в неровных изгибах светлых линий на реактивных струях непосредственно видно проявление акустических колебаний.
Цвет пламени ракетного выхлопа зависит от типа горючего. Ниже показан выхлоп ракеты «Протон-М». Горючим для его двигателей является несимметричный диметилгидразин. В его молекуле H2NN(CH3)2 всего два атома углерода, поэтому концентрация этого элемента гораздо меньше, чем в более насыщенных углеродом (от С8 до С15) компонентах керосина. При сгорании диметилгидразина не образуется углеродная сажа — в выхлопе есть лишь прозрачные азот, углекислый газ и водяной пар.
Слева вверху: отрыв «Протона-М» от стартового стола. В нижней части прозрачных голубых реактивных струй видны остроконечные белесые конусы за скачками уплотнения. Фото с сайта roscosmos.ru. Слева внизу: выхлопная струя взлетающего «Протона-М» в более вертикальном ракурсе, также видны белесые конусы за скачками уплотнения. Рыжая полоса на выхлопе из ближнего сопла — это струя окислителя, азотного тетраоксида, имеющего красно-бурый цвет. Он стравливается для сброса избыточного давления в баке центрального блока первой ступени ракеты. Фото с сайта roscosmos.ru. Справа: общий вид факела голубых струй первой ступени «Протона-М2», работающей на несимметричном диметилгидразине и азотном тетраоксиде. Желтизна нижней части факела обусловлена подсветкой возникающего на короткое время водяного тумана прожекторами мачты освещения, видимыми справа. Фото с сайта roscosmos.ru
При неполном сгорании образуется не свободный углерод, а угарный газ (CO). Его реакция с атмосферным кислородом визуально напоминает голубое пламя газовой плиты. Поэтому диметилгидразиновое пламя всегда бледное, прозрачное и похоже на пламя спиртовки, а струи на выходе из сопла светятся слабо. Догорающий на поверхности струй CO в невысоких концентрациях дает легкое бледное свечение, не заслоняющее внутренность струи. Благодаря этому хорошо различимы белесые конусы вершиной против потока — проявления сверхзвуковых скачков уплотнения в струе. В реактивных струях керосиновых двигателей они скрыты за ярким горением остатков горючего.
Еще прозрачнее водяной пар выхлопа кислородно-водородных двигателей — это практически невидимый поток. На последнем фото слева показан работающий главный двигатель «Шаттлов» RS-25. Ударные уплотнения в его струе видны из-за мгновенно выпадающего за ними (в области резкого падения давления) высокотемпературного водяного тумана, имеющего плотный молочно-белый цвет. Настолько горячий туман больше нигде нельзя наблюдать визуально. На водороде летает и американская тяжелая ракета-носитель Delta-IV Heavy с двигателями RS-68, но пламя ее выхлопа окрашено в довольно яркий желтый цвет. Это испаряется защитное абляционное покрытие на поверхности центральной части сопла, вещество которого и окрашивает бесцветный водяной пар испаряющимися ионами натрия.
Слева: работающий главный двигатель «Шаттла» RS-25 во время стендовых испытаний. Истекающая струя состоит из чистого водяного пара и потому абсолютно прозрачна. Внутри струи ниже невидимого скачка уплотнения образуется плотный белый конденсат — высокотемпературный водяной туман, который виден в самом низу снимка. Фото с сайта en.wikipedia.org. Справа: старт ракеты-носителя Delta-IV Heavy с кислородно-водородными двигателями RS-68. Прозрачная струя водяного пара окрашена в желтый цвет продуктами сгорания защитного абляционного покрытия в центральной части сопла. Фото с сайта forum.nasaspaceflight.com
Фото © Иван Тимошенко, Павел Швец с сайта roscosmos.ru.
Николай Цыгикало
Вдоволь полазил по Мрии - тот еще сарай!Вот где наши следы пересекались) Бывал на борту "Мрии" на первом МАКСе в 1993 году. Правда, на месте КВС не сидел. Там же смотрел её показательный полёт. И скрытная съёмка объектов дело знакомое) По ракетной теме больше занимался входом в атмосферу и правильной работой основного оснащения боевого блока) - очень своеобразные летательные аппараты, даже космические минут на двадцать)) но сложные с точки зрения динамики полёта. Баллистика всех видов, от внутренней и терминальной до орбитальной, такая же аэрогазодинамика всех диапазонов вплоть до особо разрежённых сред, и теория управления. Вопросы перехвата целей разных типов с разными диапазонами скоростей и динамикой, перехваты в космосе. Не раз бывал в Космическом центре им. Кеннеди, во Флориде. Рыбу там заодно ловил в океане). Осталась машинальная аналитика разных картин, иногда проясняю для интересующихся те или иные дела.)
Схема работы жидкостного ракетного двигателя