В 1964 году Нобелевскую премию по физике «За фундаментальные работы в области квантовой электроники, которые привели к созданию генераторов и усилителей на лазерно-мазерном принципе» разделили Николай Геннадьевич Басов, Александр Михайлович Прохоров и Чарльз Хард Таунс. Удивительно, но мазер изобрели совершенно независимо и одновременно две команды — советская и американская. Об этом и пойдёт речь.
«А мазер — то же самое, что и лазер?» Такой вопрос я слышал не раз. Я бы сказал, что мазер и лазер связаны примерно так же, как чоппер и спортбайк. И то и другое — мотоциклы, два колеса, руль, цепной привод, но предназначены они для разных задач и, соответственно, имеют разные характеристики. А ещё мазер появился на шесть лет раньше своего более известного собрата.
И мазер, и лазер относятся к квантовым усилителям (они же квантовые генераторы), действие которых основано на принципе вынужденного, или индуцированного, излучения, сформулированного Альбертом Эйнштейном. Суть этого явления состоит в том, что если атом находится в возбуждённом состоянии, то под действием внешнего фотона строго определённой частоты, равной частоте перехода между возбуждённым и основным состоянием, он, в свою очередь, может излучать фотоны такой же частоты. Это касается не только атомов, но и молекул, ионов, электронов или ядер. Проще говоря, когда в возбуждённый атом попадает сторонний (индуцирующий) фотон, он стимулирует переход системы с более высокого на более низкий энергетический уровень и атом излучает новый фотон с характеристиками, идентичными индуцирующему фотону. Первый фотон при этом не поглощается, так что на выходе у нас уже два когерентных, то есть имеющих одинаковую частоту и фазу фотона!
Именно этот принцип лежит в основе квантовых усилителей — мазеров и лазеров. А раз принцип общий, проще будет сперва объяснить, как работает более известная нам система — лазер, а затем рассказывать об отличиях мазера.
Важнейший элемент лазера — рабочая, или активная, среда, то есть вещество, атомы которого, собственно, излучают фотоны при переходе из возбуждённого состояния в основное. При нормальных условиях количество атомов с низкой энергией (то есть в основном состоянии) в рабочей среде значительно превышает количество возбуждённых атомов. Для того чтобы перевести как можно большее число атомов в возбуждённое состояние, активную среду накачивают, то есть сообщают ей дополнительную энергию. Существует много вариантов накачки: с помощью газоразрядных ламп, электрического разряда, излучения других лазеров и т. д.
Когда число возбуждённых атомов превышает число атомов с низкой энергией, активная среда переходит в состояние, которое называется инверсией населённостей. При этом система уже не может находиться в термодинамическом равновесии, и некоторые возбуждённые атомы начинают спонтанно, без внешнего воздействия излучать фотоны. Эти фотоны соударяются с возбуждёнными атомами активной среды, вызывая индуцированное излучение. Для эффективного усиления света лазер имеет оптический резонатор — в простейшем случае это два зеркала, расположенных друг напротив друга. Резонатор отражает свет, заставляя фотоны проходить через активную среду снова и снова и вызывая эффект снежного кома. Собственно, это и есть лазерное излучение.
Длина испускаемых лазером волн напрямую зависит от рабочей среды и колеблется от 150 нанометров (у эксимерных лазеров, работающих на благородных газах) до 570 микрометров (у метаноловых лазеров). Чтобы вы представляли, о чём идёт речь: длины волн видимого спектра занимают участок с 380 до 780 нанометров, а привычный нам по кино красный луч — это длины примерно в 620–680 нанометров, то есть очень небольшой промежуток. Остальное пространство занимают другие цвета, а также ультрафиолетовые и инфракрасные лазеры.
Вот тут и кроется основное отличие мазера.
Вы не поверите, но — то же самое, что и лазер: активная среда, механизм накачки, резонатор. Просто он генерирует волны других длин — сантиметрового диапазона, так называемые микроволны. Длина такой волны может составлять от одного миллиметра (то есть в два раза больше, чем предельная длина волны у лазера) до целого метра! Естественно, необходимость генерировать другие волны подразумевает другие активные среды и механизмы накачки, но общий принцип сохраняется. Даже названия-аббревиатуры обоих приборов очень похожи. MASER — это microwave amplification by stimulated emission of radiation (‘усиление микроволн с помощью вынужденного излучения’), а LASER — light amplification by stimulated emission of radiation (‘усиление света с помощью вынужденного излучения’) — отличие всего в одно слово.
Впрочем, несмотря на единство принципа, мазер устроен несколько иначе, нежели лазер. Классический молекулярный мазер использует в качестве рабочей среды газ — водород или аммиак. Газ непрерывно подаётся в камеру низкого давления, где возбуждается с помощью СВЧ-излучения и формирует направленный атомный или молекулярный пучок. Пучок проходит через селектор (нечто вроде фильтра), отсеивающий атомы или молекулы в невозбуждённом состоянии с помощью неоднородного электрического поля. Затем пучок возбуждённых молекул попадает в резонатор, и дальнейший процесс соответствует описанному выше.
Конечно, мазеры, как и лазеры, бывают не только атомные (молекулярные), но и газовые, и твердотельные — есть несколько типов. Вот тут у многих возникает вопрос: зачем нужен мазер? В отличие от лазерного луча, его лучом нельзя ничего осветить, разрезать или соединить, поскольку мощность излучения мазера очень мала (порядка пиковатт).
Сегодня есть две основные области применения мазеров. В первую очередь они используются в качестве хранителей частоты в системах национального точного времени. Эталоном времени сейчас является секунда, равная 9 192 631 770 периодам излучения при переходе между двумя сверхтонкими уровнями основного состояния атома цезия-133. Такую секунду измеряют с помощью атомных цезиевых часов, генерирующих очень стабильную эталонную частоту. По принципу действия эти часы похожи на камертон: музыкант периодически ударяет по нему, слушает ноту и сравнивает её со звучанием струны — и так же атомные часы включаются периодически для настройки эталонного времени. А в интервалах между этими включениями точное время поддерживается хранителями частоты — водородными мазерами. Второе применение мазеров — в качестве микроволновых усилителей с низким уровнем шума в радиотелескопах.
Ну что ж, мы разобрались с теорией и теперь давайте перейдём к истории.
В 1950 году французский физик Альфред Кастлер предложил метод оптической накачки рабочей среды для создания в ней инверсной населённости. Он предположил, что электроны при воздействии на них света или других электромагнитных волн могут подниматься на более высокий энергетический уровень, — и не ошибся. На тот момент речи о квантовых усилителях ещё не шло и идея Кастлера была чисто теоретической, хотя в начале 1952-го он подтвердил правильность своего предположения с помощью лабораторного эксперимента и опубликовал работу, описывающую методику накачки.
Идея Кастлера подтолкнула других учёных к мысли о практическом применении накачки. В мае 1952 года на Всесоюзной конференции по радиоспектроскопии молодые физики Николай Басов и Александр Прохоров из Физического института АН СССР прочли совместный доклад на тему разработки оптического квантового генератора (слова «мазер» тогда ещё не существовало). В теории их доклад охватывал и мазер, и лазер, до изобретения которого оставалось ещё восемь лет. А несколькими неделями позже американский физик Джозеф Вебер из Мэрилендского университета в Колледж-Парке на Исследовательской конференции по электронным трубкам (Electron Tube Research Conference) в Оттаве прочёл публичную лекцию ровно на ту же тему.
Далее последовали публикации. Статья Вебера вышла в июне 1953 года в профессиональном ежегоднике, издаваемом для радиоинженеров, а статья Басова и Прохорова — в октябре 1954-го в «Журнале экспериментальной и теоретической физики»1. При этом статья советских учёных была более детальной.
Тем временем в «гонку мазеров» вступил игрок более важный, чем Вебер. Его звали Чарльз Хард Таунс, и он работал в Колумбийском университете в Нью-Йорке. Ещё в 1951 году Таунс высказывал идею мазера, но не занимался практической стороной вопроса — именно тогда он предложил аббревиатуру, ставшую современным названием прибора. Услышав выступление Вебера, он попросил того прислать ему тезисы лекции и взялся за вопрос всерьёз. Меньше чем за год, в 1953–1954-м, вместе со своими студентами Джеймсом Гордоном и Гербертом Зейгером Таунс построил первый в истории аммиачный мазер. В англоязычной литературе устройство так и называется: мазер Таунса — Гордона — Зейгера.
Забавно, но практически все коллеги Таунса в один голос утверждали, что его конструкция работать не будет. А когда она заработала, бросились изобретать всевозможные вариации на тему мазеров, пробуя всякие активные среды и системы накачки. С критикой Таунса в начале 1950-х выступали такие гиганты, как Нильс Бор, Джон фон Нейман и Люэлин Томас — очень значительные в научном мире фигуры.
Басов и Прохоров построили свою модель мазера в Физическом институте полугодом позже. А в 1955-м они представили трёхуровневую схему создания инверсной населённости — то есть оптическую накачку, при которой используется не два, а три энергетических уровня атомов. В случае с аммиачным мазером эта схема не использовалась, а вот лазер без неё не создать.
Вообще говоря, история мазера и история лазера связаны очень тесно. Даже странно, что мазер появился раньше: по сложности конструкции они примерно одинаковы, а лазер можно изготовить в значительно большем количестве вариаций, с десятками и даже сотнями различных активных сред, да и практическое применение его намного шире. Тем не менее началось всё именно с мазера, и в 1964 году, как говорилось выше, Таунс, Басов и Прохоров разделили за разработки в этой области Нобелевскую премию. Кастлер, к слову, тоже её получил — чуть позже, в 1966-м, за смежные исследования.
После разработки мазера Таунс со своей группой вплотную занялся квантовыми генераторами, работающими в инфракрасном спектре, то есть будущими лазерами. В этом же направлении двигались Басов и Прохоров, и тут надо заметить, что для научного сообщества в тот период железный занавес приподнялся: началась оттепель, Хрущёв побывал в США, статьи советских учёных стали активно, почти как в 1920–1930-е годы, появляться в зарубежных научных журналах.
А первый рабочий лазер в 1960 году построил, опираясь на статьи и разработки Таунса и его коллеги Артура Шавлова, сотрудник Hughes Aircraft Company Теодор Майман. Но это уже совсем другая история.
После изобретения лазера началось то, что вполне можно назвать «лазерной гонкой». В ней принимали участие разные страны — СССР, США, Франция, Великобритания, и суть её состояла в том, что учёные разрабатывали всё новые и новые типы лазеров, работающих в разных диапазонах и предназначенных для разных целей. Это было не противостоянием научных сообществ, а, наоборот, огромной всемирной работой, в рамках которой сотни физиков общались, переписывались, публиковались в зарубежных журналах. Ряд прорывов в истории лазера сделали и советские учёные.
В зависимости от типа активной среды лазеры можно поделить на несколько основных групп: газовые лазеры, лазеры на красителях, лазеры на парах металлов, твердотельные лазеры, полупроводниковые лазеры и др. В каждой группе существует своё более узкое деление: например, газовые лазеры могут быть классическими газовыми, а также химическими, эксимерными, ионными, на парах металлов и т. д.2 Следующий уровень классификации — это разделение по конкретным материалам активной среды: например, классические газовые лазеры могут быть гелий-неоновыми, аргоновыми, криптоновыми, азотными, углекислотными.
В зависимости от длины волны, режима излучения и его мощности лазеры пригодны для использования в тех или иных областях. Скажем, углекислотным лазером с его мощным длинноволновым инфракрасным излучением в непрерывном режиме можно резать и сваривать, а маломощным полупроводниковым красным лазером — считывать штрих-коды на кассе.
Один из самых заметных вкладов советской науки в «лазерную гонку» — это изобретение эксимерных лазеров. О них мы сейчас и поговорим.
Слово «эксимер» представляет собой акроним английского словосочетания excited dimer (‘возбуждённый димер’). Димер — это сложная молекула, которая состоит из двух простых (мономеров), причём они могут быть одинаковыми или разными.
Особый случай тут представляют благородные газы — гелий, неон, аргон, криптон, ксенон и радон. Они инертны и в основном состоянии не способны образовывать молекулы и какие бы то ни было химические соединения. Зато, когда их атомы находятся на более высоком энергетическом уровне, благородные газы без проблем образуют двухатомные димеры. Это свойство благородных газов и используется в эксимерном лазере.
Когда мы с помощью электрического разряда возбуждаем атомы инертного газа, происходит процесс образования димеров. Это могут быть либо двухатомные молекулы газов, либо их соединения с галогенами (хлором и фтором) — галогениды (изначально термин «димер» относился только к первому случаю, но позднее был расширен). При этом если прекратить подачу энергии, то димеры сразу же распадутся; иначе говоря, невозбуждённых молекул или соединений благородных газов не существует. Соответственно, само появление молекул автоматически создаёт инверсию населённостей, и рабочее тело — инертный газ или его смесь с галогеном — начинает излучать электромагнитные волны. После излучения молекула-димер переходит в основное состояние и за считанные пикосекунды распадается на мономеры (в данном случае на два атома).
Излучение эксимерных лазеров находится в ультрафиолетовой области с длиной волны от 126 до 351 нанометра и зависит, как и у прочих лазеров, от конкретного вещества активной среды. Короткая длина волны (и, следовательно, высокая энергия фотона) и высокая мощность делают их подходящими для выполнения ряда задач, неподвластных другим типам лазеров, — иначе говоря, их нельзя ничем заменить.
А теперь перейдём к короткой, но яркой истории изобретений.
Во второй половине 1960-х годов уже знакомый нам Николай Басов и его многочисленные коллеги из Физического института АН СССР — Юрий Попов, Бенцион Вул, Владимир Данилычев, Олег Крохин, Борис Копыловский, Виктор Багаев — активно занимались темой лазеров. Параллельно работали с лазерами в Государственном оптическом институте в Ленинграде, именно там 2 июня 1961 года был запущен первый советский лазер на рубине, его конструктором стал старший научный сотрудник Леонид Хазов. В 1962 году собственный лазер изготовили и в Физическом институте; хорошо известна вышедшая по этому поводу в 1963-м статья «Полупроводниковый квантовый генератор на p–n переходе в GaAs» за авторством большого числа людей. Ещё раньше, в 1959-м, в статье «Квантовомеханические полупроводниковые генераторы и усилители электромагнитных колебаний» были предложены полупроводниковые лазеры, хотя до реализации дело дошло значительно позже.
К концу 1960-х СССР полноправно участвовал в «лазерной гонке», поэтому практический результат не заставил себя ждать. Расширение диапазона длин волн существующих лазеров было важной задачей — это открывало новые возможности для науки и промышленности.
В 1971 году группа Басова, включавшая также Юрия Попова и Владимира Данилычева, представила в Физическом институте совершенно новый тип лазера — собственно эксимерный. Рабочей средой в нём служила ещё не смесь благородного газа и галогена, а чистый димер ксенона Xe2. Длина волны составляла 172 нанометра — на тот момент это был самый коротковолновый лазер в мире.
Новую схему тут же взяли на вооружение иностранные учёные, и началась разработка эксимерных лазеров других типов. Самое известное развитие темы было сделано в 1975-м: в том году четыре исследовательские группы из Avco Everett, Sandia, Northrop и U. S. Naval Research Laboratory независимо друг от друга (!) пришли к концепции смешивания благородных газов с галогенами. В первых трёх лабораториях получили эксимерный лазер на ксенон-броме, в четвёртой — на ксенон-хлоре. Такая плотность результатов — свидетельство того, что «лазерная гонка» велась не только между государствами, но и между лабораториями.
Почему же эксимерные лазеры так важны?
Во-первых, они являются одним из важнейших современных инструментов микрохирургии. Почти все биологические ткани очень хорошо поглощают ультрафиолетовое излучение, и при уменьшении длины волны поглощение резко растет. Поэтому УФ-излучение проникает в ткани на очень малую глубину, отдавая тонкому слою всю энергию светового импульса (а она у эксимерных лазеров достаточно велика). В результате происходит практически мгновенное нагревание очень небольшого фрагмента до высокой температуры, ткань разрушается, а продукты её разрушения испаряются. Все это происходит настолько быстро и настолько локально, что ни тепло, ни продукты разрушения не успевают распространиться к соседним участкам ткани, которые остаются невредимыми. Этот процесс называется лазерной абляцией. Человек не испытывает никаких болевых ощущений, а удалять можно исключительно тонкие слои и фрагменты, не затрагивая окружающие ткани. Такое использование эксимерного лазера запатентовала (US 4784135) в 1988 году группа американских физхимиков из компании IBM: Рангасвами Шринивасан, Сэмюэль Блум и Джеймс Винн. Их патент касался стоматологической хирургии, но впоследствии эксимерные лазеры начали применять в дерматологии, например для удаления псориазных пятен и витилиго, а также в кардиохирургии.
Особенно активно эксимерные лазеры используются в хирургии глаза. Если вы слышите словосочетание «лазерная коррекция зрения», то с наибольшей долей вероятности речь идёт именно об эксимерном лазере. Например, широко распространён лазерный кератомилёз — хирургическое исправление рефракционных свойств роговицы путём испарения тонкого слоя её ткани в нужных местах, рассчитанных специальной программой (эта операция также известна под аббревиатурой LASIK).
Широкое применение эксимерные лазеры нашли в микроэлектронике, причём здесь их начали использовать задолго до первого медицинского патента, ещё в 1982 году. В частности, эксимерные лазеры используются в современных фотолитографических машинах для изготовления микроэлектронных чипов. Обычно это лазеры «криптон — фтор» и «аргон — фтор» с длинами волн 248 и 193 нанометра соответственно.
Многие слышали о законе Мура: «Количество транзисторов, размещаемых на кристалле интегральной схемы, удваивается каждые 24 месяца». Этот закон был сформулирован в 1965 году, и уже довольно скоро он должен перестать действовать, поскольку бесконечное уменьшение физических объектов (транзисторов) невозможно. Именно эксимерные лазеры обеспечивали соблюдение этого закона последние 20 лет.
«Лазерная гонка» не прекращается и сегодня. Новые типы лазеров и их отдельных элементов (в частности, резонаторов) появляются ежегодно, причём нередко описания изобретений звучат более чем экзотично. Например, в 2016 году германо-шотландская исследовательская группа создала лазер на материале биологического происхождения — модифицированном зелёном флуоресцентном белке (eGFP), вырабатываемом некоторыми видами медуз. По своему типу он относится к поляритонным лазерам — специфической разновидности полупроводниковых устройств.
1 Статья поступила в редакцию в январе 1954 года и, надо сказать, попала в печать достаточно быстро. В советской системе, помимо профессионального научного рецензирования, статьи ещё до поступления в редакцию проходили «политическую» проверку у цепочки начальников (не всегда разбирающихся в теме) и «литовку», как тексты песен или литературные произведения. Это могло задержать публикацию материала на срок до нескольких лет.
2 Существует и ряд других критериев, по которым классифицируются лазеры: схемы энергетических уровней, тип накачки (электрический разряд, химическая реакция, электромагнитное излучение, в том числе излучение другого лазера), режим работы (непрерывный или импульсный), конструкция резонатора (однопроходные лазеры, резонаторы с плоскими, вогнутыми или выпуклыми зеркалами, кольцевые резонаторы). В этой главе я говорю только о классификации по типу активной среды.