Сергей Дворянинов
«Квант» №4, 2018
— Я вижу, ты о чем-то глубоко задумался, — сказал Папа Карло, обращаясь к Буратино. Папа Карло отряхнул стружки с фартука, отошел от верстака и склонился над столом, за которым Буратино делал уроки.
— Ты ничего не пишешь. Что так занимает твои мысли?
— Да вот никак не могу осознать, почему это Луна на Землю не падает. Висит она наверху, как яблоко, а вниз не падает, — ответил Буратино.
— Так, вопрос интересный. А не удивляет ли тебя, что Луна от Земли никуда не улетает?
— А почему это она должна улетать? — оживился Буратино. Сколько живу, ничего подобного не видел, ничто от Земли никогда не улетает. А падает все, что ни возьми: учебник со стола, яблоко с яблони, черепица с крыши. Камень, брошенный в море, опускается на дно. Даже легкая пыль, поднятая повозкой, и та со временем осаждается на дороге. Чтоб от Земли улететь — это надо постоянно крыльями махать. А в космосе воздуха нет, там и махать бесполезно — не от чего оттолкнуться. Так что с моим вопросом твой вопрос никак не связан.
— Что ж, давай рассуждать. Луна вращается вокруг Земли. Так?
— Конечно. Есть полная луна, есть ночи безлунные, это все из-за вращения Луны вокруг Земли.
— А что известно о параметрах траектории Луны?
— Один оборот Луна совершает примерно за 28 суток, радиус лунной орбиты около 380 000 км, и, следовательно, Луна движется по своей орбите с линейной скоростью, — Буратино взял в руки карандаш, — вот:
— примерно 1 километр в секунду.
— А теперь давай построим модель движения по окружности, — предложил Папа Карло. Он взял кусок фанеры, в центре его сделал отверстие, в которое снизу поместил гвоздь. На него он накинул легкое проволочное кольцо и привязал к нему тонкую нить, конец которой пропустил через небольшой деревянный шарик, заготовленный им для этажерки. Щелчок — и шарик закрутился вокруг гвоздя по окружности, удерживаемый силой натяжения нити.
— А что произойдет, если нить внезапно порвется, как будет двигаться шарик дальше? — задал вопрос Папа Карло.
— Ну, шарик покатится по инерции, а нить, как хвост, потянется за ним... — начал Буратино.
— Покатится — да, но как и куда? Конечно, тут можно подумать, но мы проведем эксперимент. Принеси-ка из песочницы во дворе немного песка, — попросил Папа Карло.
Через минуту песок был тут как тут, и Папа Карло тонким слоем нанес его на фанеру. Теперь от движущегося шарика на песке оставался тонкий круговой след. Папа Карло еще раз закрутил шарик и затем вынул гвоздь. Освобожденный шарик покатился по фанерному листу, оставляя за собой на песке прямолинейный след.
— Присмотрись, как след от шарика связан с окружностью, — предложил Папа Карло. — Этот прямолинейный след — часть касательной к окружности. Если тело движется по окружности, то его скорость всегда направлена по касательной к этой окружности. Можно сказать, что тело хочет улететь по направлению касательной или вдоль касательной.
Скорость шарика на нити постоянно меняет свое направление. Так же меняет свое направление и скорость Луны. Ускорение Луны направлено к центру Земли (его называют центростремительным ускорением) и равно
Это ускорение создает сила взаимного тяготения Земли и Луны, равная
и его можно рассчитать так:
Разумеется, оба значения ускорения близки друг другу.
Замечательно и удивительно следующее. Для нашего шарика мы видим материальный объект, создающий силу, притягивающую шарик к центру вращения, — это нить. Она деформируется, растягивается, возникает сила натяжения. Только деформация мала, не так очевидна, как, скажем, в случае пружины. Но сила есть. А вот какая сила удерживает Луну на ее круговой орбите вокруг Земли? У нас нет никакого опыта, который мог бы продемонстрировать и объяснить это явление.
— Ты задумался о том, — продолжал Папа Карло, — почему Луна не падает на Землю. И тебя это удивляет. В действительности же она постоянно падает на Землю. Пожалуй, не менее удивительно то, что Луна не улетает от Земли. А не улетает она именно из-за притяжения к нашей планете.
В заключение заметим, что обычно говорят о вращении Луны вокруг Земли. Это не совсем точно. Проделаем такой опыт. На оси длиной L разместим два одинаковых колеса, которые могут свободно на ней вращаться. Поместим нашу модель на пол и закрутим в горизонтальной плоскости. Мы увидим, что оба колеса катятся по одной и той же окружности радиусом L/2. Оба колеса вращаются вокруг их общего центра масс. Так же вращаются и два небесных тела с равными массами.
Пусть теперь колеса имеют разные массы — например, вблизи одного колеса на оси закреплен дополнительный груз. В этом случае колеса катятся по разным окружностям. Тяжелое колесо — по малой окружности, легкое колесо — по большой. Радиусы этих окружностей обратно пропорциональны массам колес. Если одно колесо сделать очень тяжелым, то оно вращаться практически не будет и его траектория на полу превратится в точку. Нам будет казаться, что легкое колесо вращается вокруг тяжелого.
Так вот, масса Земли намного превосходит массу Луны, поэтому и говорят, что Луна вращается вокруг Земли.