В норме сетчатка глаза человека содержит четыре типа светочувствительных рецепторов: три типа колбочек и один тип палочек. Рецепторы содержат белки-хромопротеины — родопсин в палочках, йодопсины в колбочках. Роль последнего при ярком освещении незначительна, поэтому для человека существует три «основных» цвета: синий, красный, зеленый — все воспринимаемые нами оттенки образованы их комбинациями. А как выглядел бы мир, если таких цветов было бы не три, а четыре? Картина «Радужные эвкалипты» калифорнийской художницы Кончетты Антико (Concetta Antico), обладающей функциональной тетрахроматией, дает возможность оценить многообразие цветов, воспринимаемых людьми с четырехцветным зрением. Слева для сравнения — фотография изображенного на картине пейзажа.
Четырехцветное зрение присуще многим насекомым, некоторым рыбам, а также большинству рептилий и птиц. Дополнительные пигменты позволяют этим животным видеть в ультрафиолетовом диапазоне. У человека тетрахроматия встречается лишь в качестве редкой генетической аномалии. На ширину воспринимаемой части спектра она не влияет, но зато существенно увеличивает чувствительность к оттенкам.
Впрочем, по меркам млекопитающих, человек обладает превосходным цветовым зрением: у многих млекопитающих зрение двухцветное, а то и вовсе монохромное. Такой регресс по сравнению с эволюционными предшественниками рептилиями скорее всего был связан с ночным образом жизни ранних млекопитающих. В темноте эффективность цветового зрения резко снижается, и утрата двух видов колбочек «прошла незамеченной». В результате примитивные звери сохранили лишь два типа рецепторов — к красному цвету и к ультрафиолету.
Позднее, когда млекопитающие снова «вышли на свет», некоторые группы сумели восстановить трехцветное зрение. Для приматов, многие из которых питаются плодами, такое зрение очень полезно: оно позволяет обнаруживать ярко окрашенные фрукты среди зеленой листвы, а также определять их спелость. Рецептор, воспринимающий зеленый цвет, возник в результате дупликации гена «красного рецептора» и последующей мутации, сместившей его чувствительность в коротковолновую область. А вот рецептор к ультрафиолету для предков человека стал бесполезным: их хрусталик не пропускает соответствующие длины волн. Но на основе этого рецептора в результате серии мутаций возник рецептор к синему свету.
Подобные мутации, изменяющие пик спектральной чувствительности фоторецепторов, могут и наделять своих носителей четырехцветным зрением. Впрочем, гораздо чаще они делают тот или иной йодопсин нефункциональным: в результате возникает дихроматия — дальтонизм. Гены «красных» и «зеленых» йодопсинов располагаются в X-хромосоме, которая присутствует в двух копиях в хромосомном наборе женщин и лишь в одной — у мужчин. Именно поэтому дальтонизм — преимущественно мужской недуг: у женщин, благодаря наличию «резервной» X-хромосомы, он развивается крайне редко. По той же причине только женщины могут стать тетрахроматами: для этого нужно, чтобы в одной из X-хромосом содержалась нормальная копия гена, а в другой — мутантный ген, кодирующий белок со смещенным пиком светочувствительности.
Поскольку каждый из йодопсинов позволяет дифференцировать около сотни оттенков, человек с обычным зрением потенциально способен различить примерно миллион цветовых комбинаций. Добавление еще одного типа рецепторов увеличивает это число до ста миллионов. Кончетта Антико — носительница мутации в гене «красного» йодопсина, чувствительность которого сместилась в коротковолновую область. Особые возможности наилучшим образом проявляются при различении красновато-желтоватых и фиолетовых оттенков: в цветовой гамме ее картин делается акцент именно на этих тонах.
Дополнительный цветовой пигмент также повысил цветовую чувствительность при низкой освещенности, позволив различать оттенки в сумерках и в тени. Стоит заметить, что для полноценного овладения тетрахроматией недостаточно одного лишь генетического фактора. Умение различать цвета во многом определяется тренировкой: способности Антико и ее импрессионистский стиль, акцентирующий цветовые контрасты, скорее всего не смогли бы проявиться без многолетних занятий живописью.
Иллюстрация с сайта theneurosphere.com.
Антон Морковин
Это как теорема пифагора которая верна для любого количества измерений, то есть катетов.Попробуйте написать и скомпилировать функцию вычисления диагонали прямоугольника по двум смежным сторонам, а потом скормить ей три смежные стороны параллелепипеда. Если язык позволит этот фокус, то получите взлом системы по замещению адреса возврата данным и исполнение данных, а то и вовсе мусора. Зрительная кора – не функция среднего по массиву скаляров. Хоть мозг так просто и не взломать, но и толком обработать можно только ТАКУЮ информацию, какую ожидаешь. А тетрахроматные цвета точек изображения отличаются ТИПОМ. Количество здесь вторично. Если трихромат видит 256 градаций каждого основного цвета, то для представления всего видимого им цвета надо 24 бита, если же тетрахромат различает 32 градации каждого основного цвета, то для представления всего видимого им цвета достаточно 15-ти бит, то есть информации его глаза будут поставлять в мозг на 60% МЕНЬШЕ.
Вверху — работа Кончетты Антико на фоне изображенного на ней пейзажа. Внизу — палитра использованных цветов. Иллюстрация из статьи K. A. Jameson et al., 2018. The Veridicality of Color: A case study of potential human tetrachromacy