Эндрю Стил

«Бессмертные». Отрывок из книги

Глава 7. Текущий ремонт

Лучший подход к исправлению признака старения — это не удаление и не замена, а ремонт. ДНК является отличным примером: клетки не продержались бы долго без ее молекулярных инструкций, и замена двух метров вещества в десятках триллионов клеток была бы и непрактичной, и невозможной. Так что мы должны найти способы исправить множество нарушений ДНК от укороченных теломер до мутаций, пока она еще находится в наших клетках.

Мы также рассмотрим восстановление баланса сигналов в крови, чтобы вернуть их на уровень, который наблюдался в молодости, и залатать поврежденные митохондрии, чтобы они могли продолжать генерировать энергию для наших клеток в старости. Начнем с теломер.

Удлинение теломер

Каждый раз, когда клетка делится, ее теломеры становятся короче. Поскольку многие из тканей для пополнения собственных рядов полагаются на делящиеся клетки, их теломеры в итоге становятся «критически короткими», что приводит к самоубийству клеток или старению. Люди с более короткими теломерами, как правило, умирают раньше, чем те, у кого они длиннее. Есть ли способ устранить поломку защитных колпачков ДНК и тем самым продлить нашу жизнь?

История теломер начинается в 1984 году, когда ученые Элизабет Блэкберн и Кэрол Грейдер исследовали их в одноклеточных прудовых существах под названием тетрахимены (Tetrahymena). Это крошечные организмы, покрытые таким количеством микроскопических волосоподобных выступов, что они выглядят пушистыми. Мой любимый факт о них заключается в том, что есть семь различных полов тетрахимен, которые они выбирают случайным образом во время спаривания, что приводит к 21 различной комбинации полов родителей, и дети затем могут снова приобрести любой из этих семи полов. Блэкберн заметила, что при определенных условиях теломеры терахимены могут удлиняться. Это казалось странным: в то время считалось, что ДНК — это постоянный, неизменный план организма, а не что-то, во что можно вмешаться. Как и почему эти крошечные существа делают из нее нечто большее?

Самая полезная особенность тетрахимен для исследования теломер заключается в том, что у них на клетку приходится около 20 000 хромосом, что дает 40 000 теломер для исследования — гораздо больше, чем ничтожные 46 хромосом и 92 теломеры в человеческой клетке. Таким образом, рассуждала Блэкберн, если бы существовал какой-то механизм, удлиняющий теломеры, эти волосатые на вид инфузории должны показать нам его. После долгих лет кропотливых исследований Грейдер и Блэкберн наконец выделили фермент, ответственный за удлинение теломер тетрахимены. Они окрестили его теломеразой, и это оказалось довольно важным открытием. Пара была удостоена Нобелевской премии по физиологии и медицине в 2009 году вместе с Джеком Шостаком, который помог Блэкберн продемонстрировать защитные эффекты теломер с помощью экспериментов на дрожжах.

Теломераза, казалось, была ферментом бессмертия, по крайней мере для клеток. Отключение гена у тетрахимены привело к тому, что маленькие семиполые клетки, которые обычно бесконечно размножались, умирали в течение недели. Большинство животных клеток не имеют активной теломеразы и могут быть использованы для обратного эксперимента: добавление дополнительной копии гена теломеразы позволяет им делиться бесконечно, избегая старения. Впервые это было сделано в клетках человека в середине 1990-х годов в биотехнологической компании Geron — по иронии судьбы, использовались клетки, принадлежащие Леонарду Хейфлику. Хейфлик по счастливой случайности пожертвовал клетки кожи с ноги: он показывал телевизионщикам, снимавшим документальный фильм о его работе, как взять образец кожи для культивирования клеток, и случайно попросил у главного научного сотрудника Geron Майка Уэста скальпель. Уэст считал, что возможность измерить «истинный предел Хейфлика» — сколько раз собственные клетки Хейфлика будут делиться, прежде чем превратятся в стареющие, — слишком хороша, чтобы упустить ее. По счастливой случайности ученые из Geron недавно выделили человеческий ген теломеразы, поэтому Уэст решил, что еще лучшим экспериментом будет вставить дополнительную копию гена в клетки кожи Хейфлика и посмотреть, что произойдет. Немодифицированные клетки Хейфлика достигли своего одноименного предела, когда надо. Но те, у которых была дополнительная теломераза, просто продолжали делиться, что сделало их первыми человеческими клетками, что были «увековечены» теломеразой. Ирония усиливается тем, что Хейфлик, которому сейчас за девяносто, всю жизнь скептически относится к тому, что мы когда-нибудь сможем вмешаться в процесс старения.

Это чудесное поведение вызывает очевидный вопрос: может ли теломераза сделать для целых людей то, что делает для клеток в пробирке? Судя по статьям в популярной прессе 1990-х годов, вполне простительно так думать. Эта история о теломерах как простых часах деления клеток и теломеразе как способе их восстановления настолько проста для понимания, что размножается подобно клеткам с активной теломеразой. Тот факт, что мы пока массово не сидим на таблетках, удлиняющих теломеры, вероятно, говорит вам, что все оказалось немного сложнее.

Самая очевидная проблема — рак. Чтобы образовать опухоль, раковая клетка должна делиться снова и снова, а это значит, что она должна остановить критическое сокращение своих теломер. В результате почти 90% раковых заболеваний реактивируют теломеразу, чтобы избежать клеточного старения. Остальные 10% используют механизм, известный как альтернативное удлинение теломер, или ALT (от англ. alternative lengthening of telomeres) — аббревиатура, которая, как темная материя и темная энергия в астрофизике, существует прежде всего для того, чтобы скрыть тот факт, что мы очень мало знаем, что это такое и как оно работает. Активной теломеразы самой по себе недостаточно, чтобы превратить клетку в раковую, но мы бы предпочли не ставить никаких галочек в контрольном списке рака, если можно этого избежать.

Это беспокойство было подтверждено первыми экспериментами с использованием теломеразы в организмах более сложных, чем тетрахимена. Ученые добавили дополнительные копии гена теломеразы в организм мышей и, хотя заметили некоторые преимущества — в том числе более толстая кожа и быстрее растущие волосы, — также обнаружили, что повышался риск развития рака. Исследования, проводимые в противоположном направлении, в которых удаляется естественный ген теломеразы у мышей, показали, что недостаток этого фермента подавляет рост опухоли. Таким образом, казалось довольно ясным, что теломераза является прораковым ферментом, и это осознание разрушило иллюзии насчет ее применения как метода борьбы со старением.

Таким образом, теломеры, по-видимому, — ключевой компонент клеточных противоопухолевых механизмов. Помимо того, что концы хромосом не склеиваются друг с другом, а важные части ДНК не расщепляются во время деления клеток, как мы узнали в Главе 4, они также используются для защиты целых организмов от рака благодаря вмешательству эволюции. Подсчитывая, сколько раз клетка делилась, теломеры обеспечивают механизм, который позволяет найти клетки, которые делали это слишком много раз. Если клетка достигнет предела делений и в итоге станет стареющей, это может спасти вашу жизнь. Вот почему теломераза отключается в большинстве клеток взрослого человека1. Тем не менее фермент явно не может быть полностью удален, даже при отсутствии рака. Например, крайне важно, чтобы эмбрионы обладали способностью восстанавливать теломеры между поколениями, чтобы жизнь детей не была остановлена короткими теломерами их родителей и вид не вымер2.

Плюрипотентные стволовые клетки, будь то эмбриональные или индуцированные, постоянно используют ее, чтобы теломеры оставались длинными, позволяя клеткам делиться бесконечно. Она также активна в некоторых взрослых стволовых клетках, таких как ГСК, вырабатывающих кровь, но только настолько, чтобы замедлить, а не полностью предотвратить укорочение теломер. И иногда в Т-клетках во время инфекции, когда им нужно быстро размножаться, чтобы противостоять конкретному врагу, на которого они нацелены.

Эволюция, похоже, ведет искусную игру, оптимизируя использование теломеразы. Динамика теломер, как это часто бывает, является биологическим компромиссом между избеганием старения и раком. Самый крайний пример — редкое генетическое заболевание, известное как врожденный дискератоз (ВДК), которое, как мы теперь знаем, вызвано очень короткими теломерами. У пациентов возникают проблемы с быстро делящимися тканями, такими как кожа, волосы и кровь, и они испытывают что-то вроде ускоренного старения с быстрым поседением волос, легочными симптомами и остеопорозом. Есть даже мрачная ирония в том, что пациенты с ВДК более восприимчивы к определенным видам рака. Это происходит потому, что действительно короткие теломеры вызывают состояние, называемое кризисом. И, если клетка не стареет, хаос в ее ДНК может привести к вызывающим рак мутациям. А недостаток теломеразы ослабляет иммунную систему, которая в противном случае могла бы отследить его раньше.

Врожденный дискератоз — это заболевание, при котором человек ускоренно стареет.

В противоположность этому в Германии была обнаружена семья с мутацией, меняющей одну букву в 57 основаниях ДНК до начала гена теломеразы. Это увеличило количество теломеразы, вырабатываемой некоторыми из их клеток, примерно на 50% и резко повысило риск развития рака. У четырех из пяти членов семьи, являющихся носителями этой мутации, развилась меланома, а у последнего в возрасте 36 лет было несколько тревожных родинок на коже. У одной из женщин из этой семьи в 20 лет развилась меланома, затем рак яичников, почек, мочевого пузыря, груди и, наконец, легких, который убил ее в 50 лет. Просто невероятно, сколько неприятностей может причинить одно основание ДНК из трех миллиардов.

Таким образом, теломераза — это фермент-Златовласка3: слишком мало — и быстро делящиеся ткани разрушаются; слишком много — и рак легко берет верх над организмом. К счастью, у большинства из нас он находится в пределах нормы. Хотя существует некоторая естественная вариация в населении, т. е. у каждого из нас немного разные уровни теломеразы, в целом это не имеет большого значения. Если вы посмотрите на человеческие популяции, то можете сравнить людей с тонкими вариациями ДНК, которые немного увеличивают или уменьшают активность теломеразы. Более активная теломераза немного увеличивает риск смерти от рака, но не имеет большого значения для риска смерти в целом, потому что вы чуть лучше защищены от других проблем, таких как сердечно-сосудистые заболевания, которые связаны с короткими теломерами.

Итак, если длина теломер и уровень теломеразы подобны хождению по канату между старением и раком, то какие практические меры могут помочь нам удержаться и не упасть? Если вы хотите проследить историю попыток превратить теломеразу в конкретный метод лечения, можно изучить карьеру молекулярного биолога Марии Бласко. В 1993 году она переехала из лаборатории в Испании, где защитила докторскую диссертацию, в США, чтобы работать в постдокторантуре4 у Кэрол Грейдер, которую вы помните по ее открытиям теломеразы у тетрахимены.

Бласко не испугалась, когда иллюзии насчет теломеразы, казалось, испарились в начале 2000-х. Убежденная в том, что понимание теломер может привести к созданию новых лекарств от болезней, вызванных их укорачиванием, ее лаборатория продолжала эксперименты с ферментом. В 2008 году группа опубликовала статью, показывающую, что теломераза может продлить жизнь мышей — при условии, что они также генетически модифицированы, чтобы быть устойчивыми к раку. Мыши, генетически измененные так, чтобы иметь как дополнительную теломеразу, так и три дополнительных гена защиты ДНК, которые заставляют клетки умирать или стареть, если у них есть предраковые мутации, жили в среднем на 40% дольше, чем их немодифицированные собратья. Это дает надежду — битва между раком и старением, похоже, не является игрой с нулевой суммой, где каждая победа над одним приводит к смерти от другого. В сложной биологической системе усиление двух конкурирующих эффектов может дать — и в данном случае действительно дает — синергию для получения чистой выгоды.

В последующем эксперименте на взрослых мышах был опробован другой вид генной терапии. Грызунам вводили миллиарды вирусов5, которые, вместо того, чтобы вызывать инфекцию, доставляли в их клетки дополнительный, временный ген теломеразы. Те, кому делали инъекцию в возрасте одного года (примерный эквивалент 40 человеческих лет), жили в среднем на 20% дольше, чем сверстники. У мышей, получавших лечение теломеразой, также наблюдалось укрепление здоровья: улучшался контроль уровня сахара в крови, повышалась плотность костной ткани, кожа становилась более плотной, улучшались результаты ходьбы по натянутому канату. Самое главное, не было никакого очевидного роста риска развития рака.

Это многообещающе и может быть осуществимо на взрослых людях, но, как говорится, мыши — это не просто крошечные люди. Одна потенциальная трудность применения на людях этого открытия, которое стало возможно благодаря мышам, заключается в том, что мыши живут значительно меньше. Там, где средняя мышь, обработанная теломеразой в этом исследовании, прожила еще полтора года после лечения, у человека, получившего лекарство в эквивалентном возрасте, впереди были бы десятилетия, когда могли бы накопиться вызывающие рак мутации. Может ли это означать, что теломераза безопасна для короткоживущих мышей, но опасна для долгоживущих людей?

Чтобы предотвратить эту критику, лаборатория Бласко опробовала ту же самую вирусную генную терапию на взрослых мышах, генетически модифицированных и имеющих значительно повышенную восприимчивость к раку. Не было никакой заметной разницы в частоте развития рака между мышами, получавшими дополнительную теломеразу, и теми, кто получал контрольную дозу вируса, не содержащего ДНК, — показатели в обеих группах были одинаково и ужасно высокими. Это говорит о том, что даже в среде с высокой склонностью к раку этот вид генной терапии теломеразой по крайней мере не ухудшает ситуацию, и наводит на мысль, что генная терапия у взрослых людей может быть не такой канцерогенной, как первоначально опасались.

Последний эксперимент лаборатории Бласко включал создание мышей с очень длинными теломерами, но совершенно нормальной теломеразой. Эти подопытные жили в среднем на 13% дольше, чем грызуны с теломерами нормальной длины. Также наблюдался ряд преимуществ для здоровья: меньший вес, более низкий уровень холестерина, меньшее повреждение ДНК и, что особенно важно, более низкий риск развития рака. Этот эксперимент показывает, что очень длинные теломеры по сути не являются проблемой, но именно гиперактивная теломераза повышает риск развития рака, как мы видели на примере немецкой семьи. Таким образом, если бы мы могли увеличить длину теломер, не обращаясь к существующим генам теломеразы, возможно, можно было вообще обойти теломеразную дилемму — выбор между раком и дегенерацией.

Со всеми этими захватывающими доказательствами, полученными в экспериментах на мышах, сейчас необходимо провести больше испытаний, чтобы изучить теломеразу у животных, более похожих на нас. Одним из вариантов может быть переход прямо к людям. Как мы уже видели с другими признаками, существует множество случаев, когда теломеры ответственны за болезни более страшные, чем медленное старение до самой смерти. Начать можно с людей, страдающих врожденным дискератозом или несколькими сопутствующими заболеваниями, непосредственной причиной которых становится недостаток теломеразы.

Другая возможность — идиопатический легочный фиброз, заболевание легких, его вы, возможно, помните как первый вариант, на котором опробовали сенолитическую терапию. (Обнадеживает то, что короткие теломеры и чувствительные клетки оказываются в одних и тех же местах, учитывая, что одно может вызвать другое.) Эксперименты с генной терапией и теломеразой на мышах предполагают, что она может обратить вспять ИЛФ. И учитывая, что в настоящее время у пациентов нет хороших вариантов лечения, некоторые, вероятно, захотят рискнуть и попробовать терапию теломеразой. За пациентами, включенными в эти исследования, будут очень тщательно наблюдать на предмет любого увеличения риска развития рака, и, если этого не произойдет, мы могли бы начать заранее предписывать лечение более широким группам людей. Поскольку более короткие теломеры подвергают риску сердечно-сосудистых заболеваний, на очереди могут быть пациенты из этой группы. Если люди с повышенным риском сердечных заболеваний, получающие теломерную терапию, не начнут умирать от рака, мы можем представить себе, что теломеразу начнут назначать всем нам в качестве профилактики.

Генная терапия — это не единственный вариант. Мы могли бы также искать лекарства или добавки, которые естественным образом усиливают активность генов теломеразы, уже присутствующих в наших клетках, пока их действие носит временный характер. Наиболее изучено ТА-65, химическое соединение, выделенное из травы, используемой в традиционной китайской медицине, которое может увеличивать как длину теломер, так и продолжительность здорового периода жизни (но не общую продолжительность жизни) у мышей, активируя теломеразу, но не повышая риск развития рака. И есть некоторые доказательства того, что оно может оказывать положительное влияние и на здоровье людей. Конечно, стоило бы покопаться в каталогах фармацевтов, чтобы найти для использования и какие-то другие молекулы.

Таким образом, фермент бессмертия девяностых, ставший страшным возбудителем рака в нулевых, снова завоевывает внимание общественности. Эксперименты на мышах представляют собой все более убедительный пример того, что теломераза, применяемая разумно, не должна быть палкой о двух концах, и нет никаких очевидных препятствий для того, чтобы опробовать эти методы на людях. И, если они сработают, мы сможем перейти от хождения по теломеразному канату с раком на одной стороне и дегенеративными заболеваниями на другой, к танцу по нему, защищенному от обоих.

Может ли молодая кровь научить старые клетки новым трюкам?

В биологии старения приз за эксперимент с богатейшими обертонами готического ужаса должен достаться гетерохронному парабиозу. Он каким-то образом умудряется сочетать франкенштейновское сшивание частей тела с вампирским вкусом к молодой крови. В таких исследованиях у двух животных, обычно крыс или мышей, разного возраста с одной стороны тела снимают кожу, а затем сшивают два открытых бока. Процесс заживления идет полным ходом, и крошечные кровеносные сосуды между телами срастаются, пока у искусственно соединенных близнецов не будет единой системы кровоснабжения.

Хотя это может показаться ужасным, гетерохронный парабиоз дал ученым новый способ понять и потенциально разработать методы лечения старения. Одна из многих жизненно важных функций крови состоит в том, чтобы служить телекоммуникационной сетью для тела, переправляя растворенные химические вещества, которые действуют как посредники, или мессенджеры, и влияют на поведение клеток во всем организме. Наблюдение за тем, что происходит, когда молодая мышь сталкивается со старой кровью, или старый грызун получает освежающую молодую кровь, дало нам новое понимание того, как влияние системных внутренних факторов может стимулировать старение. Это также вдохновляет на создание новых методов лечения, которые, к счастью, не будут предполагать пришивание стариков к подросткам.

Парабиоз был впервые разработан исключительно как научная новинка в девятнадцатом веке. В 1864 году физиолог Пол Бер сшил вместе двух крыс и продемонстрировал, что у них формируется общая кровеносная система, впрыснув одной из них ядовитое пасленовое растение, белладонну. То растение получило свое название от итальянского bella donna, что означает «красивая женщина», из-за того, что в эпоху Возрождения женщины использовали глазные капли, сделанные из его ягод, чтобы расширить зрачки и сделать их более привлекательными (его английское название nightshade, которое переводится как «ночная тень», должно сказать вам, почему это была ужасная идея). После введения его одной крысе ее зрачки быстро расширились. Через пять минут зрачки другой крысы тоже расширились, показывая, что экстракт попал в кровь другого животного, и доказывая, что их кровообращение объединилось.

Гетерохронный парабиоз — это создание единой системы кровоснабжения у двух разных организмов. Искусственно созданные сиамские близнецы!

Парабиоз с тех пор используется для изучения ожирения, рака и даже кариеса. Ученые могут изменить некоторые факторы для одного животного в паре, в то время как парабиоз гарантирует, что их внутренняя среда в основном будет общей, позволяя определить последствия изменений. Эксперимент с кариесом — отличный пример. Ученые в 1950-х годах хотели выяснить, что было причиной гнилых зубов: прямое воздействие сахара во рту или его косвенное влияние из-за нахождения в крови. Они обратились к парабиозу, скармливая одной крысе в парабиотической паре сладкую еду, а другой нормальную пищу. Благодаря общему кровоснабжению у обеих подопытных была одинаково сладкая кровь, но только у той, которая ела сахар, развился кариес, доказывающий, что высокий уровень глюкозы в крови не является фактором риска. Такие опыты могут ужасать, но это элегантный способ получить достоверные результаты.

Термин «парабиоз» с древнегреческого переводится, возможно, несколько эвфемистически, как «жизнь рядом». Для исследователей старения интерес представляет «гетерохронный» вариант — когда вместе сшивают животных разного возраста. Первые эксперименты такого рода также были проведены в пятидесятых годах Клайвом Маккеем, пионером исследований пищевого ограничения, которого вы помните из Главы 3. Он и его команда с разной степенью успеха объединили в общей сложности 69 пар крыс, что теперь кажется довольно примитивной процедурой. Одиннадцать пар умерли в течение нескольких недель от «парабиотической болезни», считавшейся следствием того, что иммунная система обоих тел начала войну против чужеродной ткани другого (интересно, что мы до сих пор точно не знаем, что вызывает ее — но это гораздо менее распространено в современных экспериментах, вероятно, из-за улучшения хирургических методов). Другие пары встречали свой конец, когда одна крыса отгрызала голову своему партнеру (в современных исследованиях ученые позволяют животным провести пару недель в одной клетке и привыкнуть друг к другу, прежде чем соединить их, как по практическим, так и по этическим соображениям). Результаты наводили на размышления, причем у более старых животных в гетерохронных парах наблюдалось улучшение плотности костной ткани, но эксперименты не были достаточно систематическими, чтобы быть действительно убедительными.

Опыты, проведенные в начале семидесятых годов, дали более достоверную картину. Ученые сравнили продолжительность жизни пар крыс, объединенных гетерохронно, как с изохронными (одного возраста) парами, так и с обычными животными, к которым никого не присоединяли. Одиночные животные жили около двух лет. Крысы в изохронном парабиозе жили немного меньше, подтверждая (возможно, это неудивительно), что сшивание с другой крысой является напряженной процедурой и оказывает давление на организм. Но старшая крыса в гетерохронной паре жила дольше — примерно столько же, сколько и одиночная крыса, если пара состояла из самцов (это означает, что привязанность к более молодому партнеру была достаточной, чтобы свести на нет недостатки самого парабиоза), и на три месяца дольше, чем обычно, если пара состояла из самок.

Что шокирует, так это то, что после этих ранних результатов парабиоз не пошел по пути столь многообещающих исследований раннего старения, и область была более или менее забыта в течение следующих 30 лет. Только в начале 2000-х годов ее окончательно воскресила команда, состоящая из супругов Ирины и Майкла Конбоев. Исследования 1970-х годов оставили без ответа ключевые вопросы: все это хорошо и показывает, что крысы живут дольше, когда их пришивают к более молодому партнеру, но что стоит за этим увеличением продолжительности жизни? В частности, Конбоев интересовал один аспект: как снижение функции стволовых клеток с возрастом влияет на способность тканей к регенерации. В какой степени это снижение вызвано старением среды старого тела мыши, а не какими-либо внутренними проблемами в самих клетках?

Когда мы становимся старше, нам требуется больше времени, чтобы оправиться от травм, будь то порезы и царапины или сломанные кости. Как мы уже говорили, во многом это происходит потому, что постепенно снижается функция стволовых клеток, которые обычно восстанавливают эти ткани. И меньше стволовых клеток с энтузиазмом производят меньше клеток-предшественников, способных заменить поврежденные или потерянные при травме. То же самое относится и к старым мышам, поэтому Конбои решили посмотреть, что происходит со скоростью заживления у мышей в различных парабиотических комбинациях: двух сшитых молодых особях, двух старых и молодых и старых, соединенных вместе. В трех различных тканях — мышцах, печени и мозге — результаты были ясны. Старые мыши, прикрепленные к молодым, исцелялись так же, как молодая мышь, прикрепленная к другой молодой. Чтобы доказать то, что это было как-то связано с сигналами в крови, реактивирующими клетки старой мыши, а не молодыми стволовыми клетками, услужливо переносимы кровью на спасательную миссию от младшего партнера, они генетически изменили некоторых молодых особей в эксперименте так, чтобы их клетки светились зеленым. При исследовании заживающих тканей под микроскопом только 0,1% имели характерное зеленое свечение — в значительной степени весь лечебный эффект происходил от пробуждения спящих клеток у старых мышей6. В подтверждающих экспериментах ученые собрали образцы клеток у старых мышей в пробирки и окунали их в молодую плазму крови — жидкую часть крови соломенного цвета, очищенную от клеток. Результаты были примерно такими же: молодая плазма омолаживала старые клетки, восстанавливающие свой потенциал роста.

Эти результаты поистине замечательны. Старые клетки не безвозвратно обречены, повреждаясь без всякой надежды на восстановление. Вместо этого есть скрытый потенциал, что их может исправить омолаживающая сила молодого партнера. Способность старых клеток и органов оживляться при улучшении среды организма не была данностью — не было бы ничего удивительного, если бы они были внутренне изношены, неспособны процветать даже при поддержке. Вместо этого старую мышь можно омолодить, присоединив ее к более молодой, и она сможет жить дольше и здоровее, используя собственные клетки, пробужденные более молодой сигнальной средой.

Сообщение, которое пресса создала по этому поводу, было еще более убедительным: молодая кровь обладает регенеративной силой. Она не только может быть чудодейственным лекарством, но и в качестве дополнительного бонуса вносит вклад в многовековые легенды о вампирах. Внезапно пристрастие к крови девственниц перестало казаться таким уж надуманным в качестве стратегии бессмертия. Исследование, опубликованное в 2005 году, попало в заголовки газет по всему миру.

При сшивании вместе старой и молодой крыс старая выигрывает больше.

К сожалению, поскольку это биология, все не так просто. Во-первых, те, кто думает пить молодую кровь, должны знать, что ферменты в желудке быстро разрушат большую часть сигнальных молекул, которые она несет, прежде чем они попадут в вашу систему кровообращения. Это означает, что кровь из чьей-то яремной вены будет бесполезна. Однако не только традиционный вампирский способ получения крови имеет недостатки. Что также не попало в заголовки газет, так это значительный негативный эффект на молодых мышей в парабионте. Это предполагает альтернативное объяснение. Молодая кровь — это не эликсир жизни, возможно, просто старая кровь смертельна, и услуга, которую оказывает молодая мышь, — это разбавление проблемных сигналов в старой крови, что дорого обходится ее собственному здоровью. На самом деле, вероятно, здесь верно и то и другое.

Последний нюанс состоит в том, что гетерохронный парабиоз — это гораздо больше, чем просто смешение крови. Старшее животное получает преимущество молодых органов младшего. У более молодой крысы или мыши лучше работает печень и почки для фильтрации токсинов, а также хорошие легкие и более сильное сердце, чтобы обеспечить доставку большего количества кислорода в органы обоих животных, молодая иммунная система с полностью функциональным тимусом, лучше обнаруживающая и уничтожающая бактерии, вирусы и предраковые или стареющие клетки, и так далее. Есть и гораздо более повседневные факторы: например, молодые мыши больше бегают по клеткам. И старая мышь, пришитая к одной из них, выигрывает от принудительного режима упражнений. Это означает, что преимущества старой мыши в парабиотической паре существенно выходят за рамки простого добавления полезных сигнальных молекул или разбавления плохих.

Эти неясности не потушили вспышку интереса со стороны ученых и биохакеров7 Кремниевой долины, которые действовали с разной степенью научной строгости. Продолжающиеся эксперименты по парабиозу показали нам, что у более старой мыши в гетерохронной паре улучшаются такие аспекты, как рост клеток головного мозга и кровеносных сосудов в головном мозге, регенерация спинного мозга. А еще случается такое, что старое, слишком большое сердце уменьшается до более приемлемого размера. Это расширяет перечень органов, которые выигрывают от парабиоза и могут иметь скрытую способность к исцелению, но не приближает нас к созданию эффективной терапии.

Другие пытались ввести молодую плазму старым мышам и людям. Есть некоторое научное обоснование для того, чтобы попробовать этот метод и просто посмотреть, что произойдет. Переливание плазмы — относительно безопасная процедура, и положительный результат обеспечит доказательство принципа, на котором затем можно было бы основываться, подобно первоначальным экспериментам с парабиозом. Однако испытания на людях, по-видимому, не увенчались оглушительным успехом. Одно из них было проведено в Южной Корее: ученые надеялись использовать молодую плазму для облегчения старческой астении. Оно началось в 2015 году, но исследователи до сих пор не сообщили о каких-либо результатах, а в американском испытании делали переливание молодой плазмы пациентам с болезнью Альцгеймера, но не преуспели в лечении.

Эта область также приобрела дурную славу из-за частных фирм, пытающихся нажиться на эйфории по поводу молодой крови. Одна компания под названием Ambrosia предлагает любому человеку старше 35 лет возможность получить литр юношеской плазмы за 8 000 долларов (на момент написания этой книги промо-предложение также позволяет получить два за 12 000 долларов: купите один, второй — за полцены). Несмотря на известную популярность среди руководителей технических компаний в области Залива Сан-Франциско и венчурных капиталистов, надеющихся продлить свое пребывание на Земле8, фирма временно прекратила лечение после того, как Управление по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA) выпустило заявление, предупреждающее, что переливание молодой крови было рискованным и не обладало доказанной эффективностью. Потратив почти год на пересмотр правил, в Ambrosia решили, что их методы технически легальны, и возобновили работу. Компания также выставляет счета за лечение как за платное участие в испытании, но на момент написания книги никаких результатов мы не увидели. Хуже того, нет контрольной группы, с которой можно было бы сравнить тех, кому сделали переливание, что очень затрудняет определение возможных эффектов лечения. Вы не можете сделать половине ваших пациентов инфузию физиологического раствора, если они заплатили за него 8000 долларов, даже если это будет справедливым испытанием.

Все это происходит, несмотря на то, что в 2014 году, за два года до того, как была создана Ambrosia, был вбит очередной гвоздь в гроб теории молодой крови. Исследование, в ходе которого мышам регулярно делали инъекции молодой плазмы, показало, что она не продлевает жизнь. Однако не исключены некоторые преимущества для конкретных условий — например, было показано, что молодая плазма улучшает функцию печени у старых мышей. Но это говорит о том, что глобальные эффекты парабиоза не могут быть воспроизведены простыми переливаниями.

Тем временем Конбои работали над массовым обменом крови между старыми и молодыми мышами, заменяя парабиоз соединением пар грызунов с крошечным насосным устройством для обмена кровью. Это довольно ловкое использование мини-инженерии само по себе: у мышей только один или два миллилитра крови9, поэтому микрожидкостный насос забирал 150 микролитров за раз, чтобы безопасно производить обмен между старыми и молодыми животными. После нескольких раундов этой перекачки взад-вперед у двух мышей получается смесь 50:50 молодой и старой крови, и можно начать тестирование.

Этот эксперимент гораздо менее инвазивен, чем парабиоз, и рассматривает только то, что происходит в самой крови, без длительного взаимодействия органов. Даже результаты одноразового обмена были существенными и сильно отличались от парабиоза. Молодая кровь сохранила некоторые из своих омолаживающих свойств, улучшая регенерацию мышечных клеток у старой мыши, но в целом положительное влияние на старшее животное перевешивалось отрицательным воздействием старой крови на молодую. Из трех исследованных тканей — мышц, печени и мозга — последний пострадал сильнее всего. Молодая кровь не только не стимулировала рост клеток мозга у старой мыши, но и явно подавляла рост клеток мозга у молодой, хотя анализы проводились почти через неделю после обмена кровью. Опять же, простая вера в значительные плюсы молодой крови, кажется, была подорвана. Хотя, вероятно, есть некоторые преимущества, они меньше, чем негативное воздействие старой крови.

Учитывая, что массовое переливание крови маловероятно и нецелесообразно, как мы можем превратить результаты этих исследований в лечение? Следующий шаг — попытаться выяснить, какая из многочисленных граней парабиоза ответственна за его последствия. Несколько групп ученых старались установить, что меняется в организме старого животного из-за переливания молодой крови, и выяснить, как обращается вспять процесс старения. Эта работа включала каталогизацию молекулярных различий, — что улучшается, что ухудшается, а что остается неизменным? — а затем проводили тщательные эксперименты, чтобы попытаться выяснить, каковы последствия подобных процедур. Одним из выявленных возрастных нарушений является белок под названием «трансформирующий фактор роста бета» (transforming growth factor beta, TGF-beta), чей уровень повышается у старых мышей и людей и который подавляет активность стволовых клеток. Напротив, окситоцин — гормон, играющий важную роль в поведении от формирования социальных связей до секса и родов, является потенциальным благоприятным фактором в молодой крови, концентрация которого снижается с возрастом. Белок под названием GDF11 также был выделен в качестве восстанавливающего молодость фактора, но последующая работа поставила это открытие под сомнение. Подобные исследования имеют много общего, потому что в крови есть десятки веществ, уровень которых меняется с возрастом, и их позитивные или негативные эффекты могут проявляться в сочетании друг с другом.

Если эта история больше связана с необходимостью регулировать вредные факторы в старой крови, чем с необходимостью добавлять регенеративные молодые, один из вариантов — адаптировать метод лечения под названием плазмаферез; это процесс, подобный диализу. В обеих процедурах кровь откачивается из тела пациента, удаляются вредные вещества, а затем она, освеженная, снова закачивается в организм. Диализ используется в случаях почечной недостаточности для удаления избытка воды и отходов из крови, от которых обычно избавляются здоровые почки. Плазмаферез применяется именно к плазме и обычно используется для удаления антител, которые вызывают гиперактивность иммунной системы при аутоиммунных заболеваниях. Если мы сможем выделить проблемные молекулы в старой крови, то сможем перенастроить устройства для плазмафереза, чтобы удалить их. Вопрос здесь, на который можно ответить только эмпирически, заключается в том, как часто может повторяться эта процедура. Проведение плазмафереза каждые несколько месяцев будет хлопотным, но, возможно, приемлемым, если это существенно укрепит здоровье. Мучительный график четырехчасовых сеансов три раза в неделю, переносимый пациентами на диализе, будет гораздо менее приятным.

Самый простой подход — попытаться оптимизировать различные сигнальные факторы, изменяя их уровни или эффективность с помощью лекарств. Конбои попытались снизить активность TGF-бета, одного из сигнальных белков, концентрация которых, как они определили, увеличивается с возрастом, дав мышам препарат, называемый ингибитором ALK5. (ALK5 — это рецептор, который клетки используют для обнаружения и реакции на TGF-бета, поэтому его ингибирование препятствует этому.) Препарат пробуждал стволовые клетки в мозге и мышцах, вызывая рост новых нейронов и ускоряя восстановление мышц после травмы. Ученые также пробовали одновременно вводить препарат и дополнительный окситоцин, концентрация которого с возрастом снижается. Это также оказало благотворное воздействие на мозг, мышцы и печень, очень похожее на те, что наблюдались при гетерохронном парабиозе, после всего лишь недели лечения. Самым захватывающим в этом втором исследовании было то, что добавление окситоцина позволило десятикратно снизить дозу ингибитора ALK5. С практической точки зрения более низкая доза препарата снижает риск побочных эффектов у пациентов. С теоретической точки зрения это предполагает, что эти сигнальные пути взаимодействуют таким образом, что изменение нескольких сразу может иметь более выраженный эффект, чем сумма его частей. Ингибиторы ALK5 и окситоцин уже одобрены для клинического применения, благодаря чему они являются основными кандидатами для сигнально-корригирующей терапии первого поколения у людей.

Факторы, растворенные в крови, — не единственные виновники, влияющие на общетелесные изменения в сигналах, сопровождающих старение. Другим ключевым компонентом системы клеточных сигналов являются «экзосомы» — крошечные пузырьковые пакеты, которые транспортируют молекулы между клетками. Самые маленькие из них размером в десятки нанометров в диаметре — в сотни раз меньше, чем обычная клетка, и по величине похожи на вирусы. Они переносят разный груз, но передают сообщения, закодированные в микроРНК, — очень коротких отрезках молекулы, скорее похожих на ДНК, несущую информацию в виде ряда оснований (РНК использует А, С и G, с которыми мы знакомы из ДНК, но T заменяется на U). Когда экзосома прибывает в клетку назначения, она поглощается, перемещая свой груз внутрь. Там микроРНК могут выполнять свою работу, предоставляя инструкции, изменяющие поведение клетки-реципиента.

В одном исследовании изучались стволовые клетки гипоталамуса — части мозга, уже активно участвующей в регуляции сигналов, контролирующих такие фундаментальные процессы, как голод, жажда, циркадные ритмы и температура тела. Исследователи обнаружили, что гипоталамические стволовые клетки массово гибли, когда мыши в эксперименте старели. Инъекция свежих стволовых клеток из гипоталамуса новорожденных мышей не только омолодила эту конкретную область мозга — она увеличила продолжительность жизни на 10% по сравнению с животными, получившими в качестве контроля другой тип клеток. И, как это часто бывает в экспериментах по изучению старения, мыши жили не просто дольше, но и в более здоровом состоянии, лучше справлялись с упражнениями на беговом колесе и когнитивными тестами и отличались большей мышечной выносливостью.

Это удивительно: добавление стволовых клеток только в одно место имеет настолько сильный эффект, что в результате мыши фактически живут дольше. Хотя это и звучит невероятно, возможно, это не удивительно, учитывая роль гипоталамуса как сигнального звена для столь многих разнообразных процессов. Использование стволовых клеток должно продолжать добавлять новые нейроны в эту критическую область, возвращая под гипоталамический контроль регуляцию всех фундаментальных аспектов физиологии. Однако положительный эффект от инъекции стволовых клеток проявился только через несколько месяцев. По оценкам ученых, это недостаточный срок для того, чтобы они привели к созданию новых нейронов. Они сделали вывод, что за это отвечал какой-то более быстрый процесс, заставивший их заподозрить, что сигнальные экзосомы, производимые стволовыми клетками, омолаживают клеточную популяцию. Собирая экзосомы из стволовых клеток гипоталамуса в пробирку и вводя их в одиночку, они увидели много таких же омолаживающих преимуществ.

Положительный эффект от инъекции стволовых клеток проявляется только через несколько месяцев после введения.

Если этот результат подтвердится, его можно будет превратить в непосредственный способ лечения. Мы могли бы трансформировать некоторые клетки в иПСК и дифференцировать их в нейронные стволовые клетки, которые можно было бы ввести непосредственно в мозг. Или мы могли бы вырастить их в лаборатории и собрать для инфузии экзосомы, которые они производят. Вероятно, эти крошечные капсулы, несущие сообщение, играют важную роль не только в обсуждаемом аспекте старения, и это не единственный способ их применения для лечения. Одно исследование показало, что предоставление экзосом из нервных стволовых клеток значительно улучшило восстановление после инсульта у свиней. А еще экзосомы обычно исследуются как способ доставки лекарств и других полезных молекул туда, где они необходимы организму. С экзосомами, похоже, хорошие вещи действительно приходят в небольших количествах.

Хотя простая, но заманчивая идея молодой крови как лекарства от всех болезней, кажется, поселилась во многих сердцах, набирает силу гипотеза о том, что старение — это отчасти феномен нарушения системы клеточных сигналов. Все эксперименты с гетерохронным парабиозом, обменом крови, сигнальными препаратами и экзосомами показывают, что некоторые аспекты старения и потери регенеративной способности не только присущи клеткам, но и отражают реакции на сигналы в окружающей клетку среде. То, что происходит при старении, — это порочный круг: по мере ухудшения состояния внутренней среды организма клетки и ткани, пораженные этими неправильными сигналами, страдают, а затем начинают испускать собственные сигналы, которые ускоряют дегенерацию организма. Это плохая новость, потому что говорит о спиралевидности траектории старения, когда плохое ведет к худшему. Но это может быть хорошей новостью для нас, поскольку положительные изменения приводят к эффективным циклам омоложения в наших телах.

Еще предстоит определить, будем ли мы время от времени посещать клинику плазмафереза для очищения крови, принимать лекарства, чтобы восстановить баланс клеточных сигналов, или наполняться экзосомами. Но исправление неправильных сигналов, вероятно, будет важной частью антивозрастного арсенала.

<. . .>


1 Хотя теломераза отключена в клетках взрослого человека, все становится немного сложнее у других видов, начиная от короткоживущих мышей и заканчивая долгоживущими свободными от рака голыми землекопами, у которых в клетках есть активная теломераза. Разные виды нашли совершенно разные способы управлять теломеразой. — Примеч. авт.

2 Имеется в виду, что дети не наследуют уже укороченные теломеры родителей, у эмбрионов теломеры находятся в первозданном состоянии. — Примеч. пер.

3 Отсыл к героине сказки «Три медведя» — в английской версии ее звали Златовласка, — выбирающей предметы, которые не слишком сильно выделялись какими-то признаками, а были ей в самый раз. — Примеч. науч. ред.

4 Постдокторантура — это дополнительное практическое обучение для обладателей докторской степени (PhD) либо диплома о высшем медицинском образовании (MD). Это промежуточный этап академической (научной) карьеры между аспирантурой (либо медицинским вузом) и позицией самостоятельного, независимого исследователя. — Примеч. пер.

5 Аденоассоциированный вирус, если вам интересно — распространенный «вирусный вектор», используемый в генетической инженерии в лаборатории, это ведущий кандидат для использования генной терапии на людях. — Примеч. авт.

6 Ген, ответственный за зеленый флуоресцентный белок (ЗФБ), был впервые выделен из медузы в 1990-х годах. С тех пор он — и модифицированные версии, которые светятся другими цветами, с восхитительными названиями, такими как mCherry [мВишня], T-Sapphire [Т-сапфир] и Neptune [Нептун]— стали незаменимыми инструментами в биологии. Их характерное свечение под микроскопом делает то, что без них могло бы сильно усложнить эксперимент — например, определение, от какой мыши произошли две в основном идентичные клетки, — невероятно простым. — Примеч. авт.

7 Биохакеры — энтузиасты любительских исследований в области молекулярной биологии. В своей деятельности придерживаются хакерских принципов применительно к современным биологическим исследованиям, считая, что «инновации в биологии должны быть легкодоступными, недорогими и открытыми для всех». — Примеч. пер.

8 Слухи, что Питер Тиль, венчурный инвестор-миллиардер, который был соучредителем PayPal, заинтересовался этой процедурой, привели к созданию сценария об омолаживающих переливаниях, превратившегося в сатирический ситком «Кремниевая долина». — Примеч. авт.

9 Для сравнения: у среднего человека около пяти литров крови — в несколько тысяч раз больше, что в целом соответствует разнице в весе между нами и мышами. — Примеч. авт.


0
Написать комментарий

    Новые поступления






    Опубликованные главы






    Элементы

    © 2005–2025 «Элементы»