<…>
Вернувшись в Кембридж, я собиралась углубиться в идеи Сасскинда о дополнительности на горизонтах событий. Брокман убедил его написать об этом книгу, так что тема была важна, и я об этом знала. Я также знала, что если бы я могла написать об этом статью для журнала, то это дало бы мне прекрасный повод побольше общаться с Сасскиндом, чтобы закончить разговор, который мы начали на берегу океана в Санта-Барбаре.
— Он говорит, что это новая и более фундаментальная форма принципа относительности, — сказала я одному из выпускающих редакторов, прекрасно зная, что никакой редактор не сможет устоять перед соблазном получить большую статью, в которой речь идет об Эйнштейне. У таких тем есть неотразимый шарм. Мне дали зеленый свет, и я немедленно связалась с Сасскиндом.
По телефону он мне сообщил, что все началось с парадокса, непосредственно связанного с монументальным открытием Хокинга. Когда черные дыры излучают, они испаряются, их радиус уменьшается, и в конечном счете они должны будут исчезнуть из Вселенной, забрав с собой все, что в них упало. Хокинг считал, что если слон падает в черную дыру, а потом черная дыра испаряется, то она забирает слона вместе с собой, не оставляя никаких следов, ни одного бита информации о его странном исчезновении.
Для Сасскинда такой сценарий был не что иное, как кризис.
— В физике мы исходим из того, что информация никогда не теряется, — сказал он мне. — В квантовой механике это означает, что начальное состояние может быть восстановлено по конечному состоянию. Это очень, очень принципиальное положение. Квантовые состояния должны что-то значить. В физике, как мы знаем, все основывается на том, что информация сохраняется, даже если она сильно перемешивается.
Если какой-то физический закон, вроде закона сохранения информации, может нарушаться на границе черной дыры, он может нарушиться и в любом другом месте. Либо мир описывается квантовой механикой, либо нет — достаточно построить один сценарий, в котором она не работает, и вся она становится совершенно бесполезной. По словам Сасскинда, если в черных дырах может теряться информация, все здание квантовой механики рушится. Уравнение Шрёдингера, которое описывает эволюцию квантовой системы во времени, потеряло бы смысл. Волновые функции сдулись бы и опали. Распался бы любой намек на связь будущего с прошлым. Предсказания, сделанные на основе квантовой механики, выглядели бы абсурдно, так как сумма вероятностей оказалась бы когда-то меньше, а когда-то и больше единицы.
С другой стороны, если черные дыры не теряют информацию, то с общей теорией относительности надо попрощаться. Потому что существует только одна реальная возможность сохранения информации от испарения в небытие. Она не может выбраться из внутренностей черной дыры, потому что пересечение горизонта в обратном направлении потребует сверхсветовой скорости. Единственная надежда была на то, что информация никогда не падает в черную дыру, и, в первую очередь, на то, что горизонт как-то препятствует ее прохождению в царство теней.
Этот сценарий, однако, нарушает принцип эквивалентности, краеугольный камень общей теории относительности. Самой счастливой находкой Эйнштейна была мысль о том, что свободно падающий наблюдатель всегда ощущает себя находящимся в инерциальной системе отсчета, свободной от сил тяготения, что неизбежно подтвердит любой физический эксперимент. Как человек, падающий с крыши, так и слон, падающий в черную дыру, не чувствуют сил тяготения. Любой физический эксперимент убедит слона, что он находится в состоянии покоя. «Гравитация» — это фиктивная сила, которую мы вводим, когда, наблюдая за слоном из какой-то другой системы отсчета, обнаруживаем у него необъяснимое ускорение. Это способ обеспечить переход из одной системы отсчета в другую с сохранением хотя бы подобия единства реальности.
Если слон покоится в своей собственной системе отсчета, то никакая непроницаемая стена не материализуется внезапно перед ним. Стенки, блокирующие поток информации, не появляются из ниоткуда — по крайней мере так, чтобы при этом не нарушались законы физики.
— Из принципа эквивалентности следует, что если вы находитесь в окрестности, где кривизна пространства-времени невелика, то с вами не должно происходить ничего странного или неожиданного, — объяснил Сасскинд. — Кривизна вблизи горизонта небольшая, поэтому, проваливаясь сквозь горизонт, никто не должен испытывать ничего странного. Информация, чтобы не быть потерянной, никогда не должна пересекать горизонт. С другой стороны, принцип эквивалентности говорит, что горизонт — это не какое-то особое место, поэтому информации ничто не мешает пройти прямо через него.
На первый взгляд, в этих рассуждениях была какая-то ошибка: почему это кривизна вблизи горизонта черной дыры должна быть маленькой? Логично предположить, что она там весьма велика, учитывая, что черная дыра все притягивает к себе сильнее любого другого объекта во Вселенной. Но если размер черной дыры достаточно велик, пояснил Сасскинд, то гравитационные приливные силы на горизонте будут ничтожно малы. А при произвольном размере черной дыры у вас всегда есть возможность выбрать настолько малый участок поверхности горизонта, что пространство вблизи него окажется в достаточной мере плоским, чтобы не мешать потоку информации и не изменять предписаниям Эйнштейна.
Это был идеальный парадокс: информация не могла быть потеряна, не нарушая квантовой механики, и она не могла сохраниться, не нарушая общей теории относительности. Хокинг принял сторону Эйнштейна и предпочел спасти теорию относительности, жертвуя слоном и квантовой механикой. Но Сасскинд был убежден, что нельзя отказаться от квантовой механики, не отказавшись при этом и от всего окружающего нас мира. Интуиция говорила ему, что информация никогда не пересекает горизонт, но он должен был найти способ сохранить при этом принцип эквивалентности.
На самом деле, несложно показать, что информация никогда не пересекает горизонт с точки зрения ускоренного наблюдателя, находящегося вне черной дыры. Читая об излучении Хокинга, я уже убедилась, что Сэйф, то есть тот наблюдатель, который движется с ускорением, увидит световые волны до крайности растягивающимися, а время замедляющимся вплоть до полной остановки при достижении горизонта. Сэйф не видит ничего, что падает за горизонт, поскольку для него ничего по ту сторону не существует. Для него горизонт означает границу реальности, конец света. Сэйф не может потерять никакой информации, поскольку ей некуда деться.
Все становится иначе, когда речь заходит о другом наблюдателе, которого мы назвали Скрудом. Он устремляется прямо сквозь горизонт, потому что из-за принципа эквивалентности горизонта для него не должно существовать. С его точки зрения, огромный массив информации, содержащейся в его собственном теле, может легко перейти в черную дыру, даже если и не сможет выбраться оттуда обратно. Сэйф говорит, что информация остается за пределами горизонта; Скруд говорит, что она внутри черной дыры. Сасскинд был убежден в том, что если бы каким-то образом обе этих версии были истинны, то ни квантовая механика, ни общая теория относительности не были бы нарушены, и порядок в мироздании был бы сохранен.
Для того чтобы обе версии происходящего были истинны, информация, казалось бы, должна была существовать в двух местах одновременно, — так, словно каждый ее бит склонирован в две идентичные версии. К сожалению, такой сценарий исключался теоремой Журека о запрете клонирования, откуда и возникала проблема. В самом деле, если бы квантовую частицу можно было клонировать, то можно было бы перехитрить принцип неопределенности. Вы бы могли измерить положение в пространстве одного клона и импульс другого, и тогда вы бы точно знали значения сопряженной пары, — и принцип неопределенности оказался бы нарушен. Но принцип неопределенности нельзя перехитрить. Информация не может быть клонирована. Снова Сасскинд остался один на один с парадоксом: обе версии происходящего должны быть истинны, и одновременно одна из них должна быть ложной.
Когда решение пришло к нему в голову, даже Сасскинд удивился, насколько безумно оно выглядело.
— Любой другой вариант решения проблемы был исключен, оставалась только одна возможность, — сказал он. — Она казалась совершенно абсурдной, но я понимал, что это должно быть так.
Впервые он объявил о своей находке на конференции в 1993 году.
— Меня не волнует, согласны ли вы с тем, что я говорю, или нет, — сказал он аудитории. — Я хочу только, чтобы вы помнили, что я это говорил.
<…>
«Быть? Существовать? Что это значит?» — таким вопросом задавался Нильс Бор в связи с проблемой существования частицы до того, как она стала наблюдаемой.
Сасскинд, предлагая свое радикальное решение парадокса потери информации в черной дыре, следовал по стопам не только Бора, но и Эйнштейна: месторасположение бита информации должно зависеть от наблюдателя. Если вы хотите спросить, где расположена информация, то сначала вам надо ответить на вопрос: «А с чьей точки зрения?»
В соответствии с квантовой механикой, информация сохраняется, поэтому Сэйф должен видеть, что она остается над горизонтом черной дыры. В соответствии с принципом эквивалентности общей теории относительности, Скруд должен видеть ту же самую информацию внутри черной дыры. Теорема Журека запрещает дублирование информации. Но, по утверждению Сасскинда, это и не важно. В конце концов, кто может обнаружить информацию одновременно в двух местах? Никто не может быть и над горизонтом событий, и под ним одновременно.
Обнаруженный Сасскиндом ключ к разрешению парадокса заключался в том, что нет такой системы отсчета, в которой бы информация клонировалась. Если вы интересуетесь, что может увидеть тот или иной наблюдатель, у вас есть возможность выбрать Сэйфа или Скруда, и у каждого из них своя история, — но вам никогда не удастся выбрать сразу обе. Это был своего рода вынос мозга: обе истории были одинаково истинны, но нельзя рассказывать их вместе. Вы должны выбрать систему отсчета и в ней оставаться. В любой данной системе отсчета ни один наблюдатель никогда не сможет стать свидетелем нарушения законов физики. Нарушения можно увидеть, только посмотрев божественным глазом, но этого, к счастью, ни одному наблюдателю не суждено. Два описания — над горизонтом событий и под горизонтом событий — комплементарны, дополнительны, как утверждает Сасскинд, ровно так же, как несовместимы, но дополнительны волновое и корпускулярное описания, скажем, электрона. Этот принцип Сасскинд назвал принципом дополнительности у черных дыр, или принципом дополнительности для горизонта событий.
Физиков заинтересовала гипотеза Сасскинда. Но Хокинг упрямо утверждал, что информация действительно исчезает под горизонтом, испаряясь в небытие, и многие приняли его сторону, оставив открытым вопрос о судьбе квантовой механики. Сасскинду, однако, проблема была очевидна. Парадокс потери информации в черной дыре надвигался на физику черной тучей. Кучевым хаосом. В 1997 году на поле произошла смена составов. Аргентинский физик Хуан Малдасена работал над теорией струн в антидеситтеровском пространстве, или, сокращенно, AdS-пространстве. В отличие от нашего деситтеровского пространства, dS-пространства, которое определяется положительным значением космологической постоянной, космологическая постоянная в AdS-пространстве отрицательна. Наша положительная космологическая константа расталкивает пространство наружу, вызывая ускоренное расширение Вселенной. Поменяйте плюс на минус, и она будет не расширять, а сворачивать пространство внутрь себя, изгибая его седлом в каждой точке, изминая пространство и время так, что только Эшеру под силу вообразить и изобразить неизобразимое, и тогда, например, будет возможно прохождение светового луча вдаль на бесконечное расстояние и обратно за конечное время. Но и это еще не все. В модели Малдасены пространство-время было десятимерным. При этом пять измерений были свернуты, как оригами, в каждой точке. Чтобы облегчить мне жизнь, Сасскинд посоветовал представить его себе в виде пятимерной (плюс время) сферы с четырехмерной границей.
Благодаря своей гениальной интуиции и сложной математике Малдасена обнаружил, что теория струн в десятимерной AdS-сфере математически эквивалентна обычной квантовой теории частиц на четырехмерной границе. Квантовая теория частиц, как оказалось, была удивительно похожа на КХД, квантовую хромодинамику, теорию, которая описывает взаимодействия кварков и глюонов в нашей Вселенной. Разница была только в том, что квантовая теория Малдасены относилась к классу конформных теорий поля (сокращенно — CFT): то есть, в отличие от КХД, в которой сильное взаимодействие становится слабее на меньших расстояниях, в его теории взаимодействия оставались одними и теми же на всех масштабах. Эта эквивалентность теории струн в AdS-пространстве и CFT на его границе стала известна, как AdS/CFT-дуальность.
Все это звучало довольно заумно, но чем больше я думала, тем больше понимала, и тем более удивительным мне представлялся результат. Во-первых, он означал, что теория струн, то есть теория, включающая в себя гравитацию, была полностью эквивалентна обычной теории квантовых частиц без гравитации. До этого все боролись за то, чтобы объединить квантовую механику и общую теорию относительности в единую «теорию всего», но AdS/CFT предполагает, что, может быть, гравитация — это то, как квантовая механика выглядит в другой геометрии. Неудивительно, что ведущие физики всего мира, узнав о находке, пустились в пляс: «Ээ, Малдасена!» Во-вторых, здесь странным образом снова вставал вопрос о размерности. Теория с пятью измерениями может быть прекрасно отображена на другую теорию — в четырехмерным пространстве.
Сасскинд постоянно думал о проблеме размерности с тех пор, как Бекенштейн обнаружил, что энтропия черной дыры пропорциональна площади ее горизонта, а не ее объему. Если энтропия определяется объемом информации, упрятанной в трехмерную внутренность черной дыры, то почему ее значение определяется двумерной площадью ее поверхности? Получалось так, словно трехмерная черная дыра одновременно каким-то образом была двумерной. Вопрос возник у меня сразу, едва я услышала об этой странности, и мне приятно было узнать, что он не давал покоя Сасскинду тоже.
Сасскинд понимал, что любопытная связь между энтропией и площадью не ограничивалась случаем черных дыр: то же можно было сказать и о любой области пространства. Ведь любая область пространства может стать черной дырой, если вы поместите в нее достаточное количество массы. Черные дыры — объекты с самой высокой энтропией, поэтому если их энтропия умещается на поверхности, то так же может вести себя энтропия любого другого объекта.
Это было безумно, нелогично, но неопровержимо: общая сумма информации в любой области трехмерного пространства пропорциональна площади ее двухмерной границы. Сасскинд назвал эту гипотезу голографическим принципом, поскольку именно так бывает с голограммами, когда на двухмерной пленке содержится вся информация, необходимая для воссоздания трехмерного изображения.
В один прекрасный день, когда он объяснил мне это по телефону, я огляделась вокруг. Я сидела у себя в редакции New Scientist, и до меня вдруг дошла вся немыслимость того, что он говорил. Каждый стул, каждый журналист, каждая молекула воздуха между полом и потолком могут быть точно спроецированы, без потери разрешения, на поверхность стены. Трехмерный объем пространства намного больше, чем площадь ограничивающей его поверхности, а информационное содержание их одинаково? Можно подумать, что одно из трех пространственных измерений просто совершенно бесполезно. Как будто все, что мы знаем о пространственной размерности, — ошибочно.
Сасскинд предположил, что сам мир был своего рода голограммой, проекцией какой-то теории с выключенной гравитацией в пространстве меньшей размерности, записанной на стенках Вселенной. Мне даже стало интересно: какое предположение выглядит более странно — что я всего лишь компьютерная симуляция или что я голографическая проекция откуда-то с конца света? Наверное, что я голограмма. В любом случае, AdS/CFT-дуальность Малдасены была идеальным воплощением голографического принципа Сасскинда. Она убедила сомневающихся физиков, в том числе Хокинга, что информация не может пропасть в черной дыре.
В AdS/CFT математическая проекция устанавливает взаимно однозначное соответствие между пятимерным внутренним объемом и ограничивающей его четырехмерной поверхностью, поэтому за любым объектом или физическим процессом в пространстве можно с равным успехом следить по его образу на границе меньшей размерности. Отсюда возникает интересный вопрос: что будет образом меньшей размерности для черной дыры? Черная дыра вся состоит из гравитации, но в модели Малдасены гравитации нет на границе. Как может выглядеть черная дыра без гравитации? Малдасена нашел ответ. Она будет выглядеть как горячий газ обыкновенных частиц. Точнее, она будет выглядеть как кварк-глюонная плазма.
Кварк-глюонная плазма? Я вдруг вспомнила запись у себя в дневнике, которую я сделала во время работы над статьей о кварк-глюонной плазме, обнаруженной на коллайдере RHIC. Тогда выяснилось, к всеобщему удивлению, что плазма, благодаря своей высокой текучести, гораздо лучше соответствует определению идеальной жидкости, чем какая-либо другая из известных. Она почти в двадцать раз более «жидкая», чем вода. И физики тогда не могли этого объяснить. Вот эта запись: «Разобраться с AdS/CFT-соответствием… что-то из области теории струн… объясняет жидкий файербол?»
— Кварк-глюонная плазма дуальна черной дыре? — пораженная этой мыслью, спросила я Сасскинда. — Я где-то читала, что AdS/CFT-дуальность помогает объяснить результаты измерений на коллайдере RHIC.
— Вот именно, — сказал Сасскинд. — Кварк-глюонная плазма дуальна черной дыре, и вязкость горизонта событий черной дыры можно вычислить. Полученное таким образом значение вязкости для десятимерной черной дыры практически точно совпадало со значением вязкости кварк-глюонной плазмы, измеренным на RHIC.
— Так, подождите, — сказала я. — Получается, что мы можем использовать математику, развитую для десятимерной черной дыры, в расчетах вязкости четырехмерной кварк-глюонной плазмы? Или когда мы измеряем кварк-глюонную плазму, мы в буквальном смысле наблюдаем десятимерную черную дыру через четырехмерные очки?
Будучи онтическим структурным реалистом, я знала, какой ответ окажется правильным.
— Все зависит от того, кого вы спрашиваете, — сказал Сасскинд. — Может быть, кварк-глюонная плазма является аналогом десятимерной черной дыры. Но связь может быть глубже. Многие из нас думают, что эта связь, вероятно, гораздо глубже.
— Так много говорили о невозможности проверить теорию струн… — сказала я.
— А разве это не возможность проверить теорию струн? — спросил Сасскинд. — Я думаю, что да.
Это должно было его ободрить, подумала я. В самом деле, круг замыкался. Начиналось все с того, что Сасскинд строил теорию струн для описания адронов — частиц, состоящих из кварков и глюонов. Но потом все поняли, что его теория работает только для каких-то других объектов, отличающихся очень высокими энергиями. А теперь оказывалось, что Сасскинд все-таки добился своего: его теория струн описывала адроны — только в десятимерном пространстве и какой-то принципиально другой геометрией.
— Значит, дуальность черных дыр и кварк-глюонной плазмы убедила физиков, что информация не может быть потеряна? — спросила я.
— Да, — сказал Сасскинд. — Все знали, что информация не может быть потеряна просто в разогретом газе элементарных частиц — это же основы квантовой статистики. Если кварк-глюонная плазма дуальна черной дыре, то есть если они лишь по-разному описывают одно и то же, тогда информация и в черной дыре также не может пропасть.
Хокинг признался, что был неправ. Сасскинд вышел победителем из тридцатилетней битвы.
— Но мы живем не в антидеситтеровской вселенной, — сказала я Сасскинду. — Наша Вселенная деситтеровская. А AdS/CFT-дуальности оказалось достаточно, чтобы убедить Хокинга?
— Да, — сказал Сасскинд. — Оппозиция, включая Хокинга, вынуждена была сдаться. Все было настолько математически точно, что из многих практических соображений все физики-теоретики пришли к выводу, что голографический принцип, принцип дополнительности для горизонта событий и принцип сохранения информации должны быть соблюдены. Это был последний гвоздь, вколоченный в гроб, в котором похоронили идею о потере информации в черной дыре.
Это был и гвоздь в гроб инвариантности размерности. Я могла, наконец, подойти ближе к тому, что давно волновало меня — к понижению пространственной размерности энтропии черной дыры: оно означало, что размерность пространства не может быть частью окончательной реальности. Голографический принцип, и в особенности AdS/CFT, показывали, что эквивалентные описания одних и тех же физических явлений могут быть в пространствах различной размерности. В них использовалась одна и та же математика. Как онтический структурный реалист, я знала, что ни одно из них нельзя считать «настоящим», по-настоящему существующими можно считать только содержащиеся в них математические отношения. Размерность — не инвариант. Она не ингредиент окончательной реальности.
Струны также не были инвариантом. AdS/CFT-дуальность показала, что струны были самыми обычными квантовыми частицами, только в сильно искомканном пространстве более высокой размерности. Если такие частицы на ограничивающей поверхности и струны внутри ограниченного ею объема идеально соответствуют друг другу, то нет никакой подлинной разницы между ними. Частицы, струны… это всего лишь два способа посмотреть на одно и то же.
После того как AdS/CFT-дуальность убедила физиков, что информация не может исчезнуть в черной дыре, они все поторопились запрыгнуть на подножку объяснительного поезда Сасскинда. Несмотря на всю радикальность его варианта принципа дополнительности, это был единственный способ сохранить информацию в соответствии с квантовой теорией, не нарушая при этом принципы теории относительности. Но неявные предположения, которые он подразумевал, были глубокие. По-настоящему глубокие. Я поняла, насколько дьявольски глубоки они были, размышляя о Сэйфе, наблюдающем, как слон падает в черную дыру.
Это ужасная сцена. По мере приближения к горизонту слон растягивается от хобота до хвоста, скручивается и деформируется, замедляя во времени свое падение в надвигающуюся бездну. Медленно он приближается к точке невозврата. Пространство вокруг него становится все жарче. Но перед тем как слон пересечет горизонт, он обугливается в излучении Хокинга и превращается в печальную горстку раскаленного пепла.
Наблюдатель Скруд, как ему и положено, сидит на слоне верхом. С его точки зрения, они со слоном плавно падают в черную дыру, не замечая ничего достойного внимания там, где Сэйф видит горизонт событий. Никто не деформируется, ничто не горит. Просто пустое пространство. Если черная дыра достаточно велика, то Скруд и его слон счастливо проживут остаток своих дней, прежде чем попадут в сингулярность.
Итак, слон мертв вне черной дыры, но жив и здоров, оказавшись внутри. В этом было довольно серьезное противоречие. Это было, как если бы кот Шрёдингера, закрытый в камере, был одновременно и жив и мертв, а сама камера одновременно плавно скользила в пустом пространстве и оказывалась поглощенной адским пламенем на расстоянии миллиарда световых лет от нас. Казалось, что существуют две копии одного и того же слона, но в квантовой механике запрещено клонирование и один слон не может быть одновременно в двух местах. Ответ Сасскинда на парадокс таков: ни один наблюдатель не может увидеть сразу двух слонов.
— Так сложилось, что люди полагают, будто объект под горизонтом событий и объект над горизонтом — это два разных объекта, и им соответствуют разные биты информации, — сказал Сасскинд. — Их не перепутаешь. Но, как мы выяснили, невозможно одновременно говорить и о том, что находится за горизонтом, и о том, что находится перед ним.
Он пояснил, что путаница возникает из-за неправильного использования союза «и».
— Более правильно в данном случае говорить «или», а не «и», — продолжал Сасскинд. — Дополнительность в квантовой механике всегда связана с заменой «и» на «или». Свет — это волна, или свет — это частица: все зависит от эксперимента, который вы проводите. Электрон характеризуется положением в пространстве, или он характеризуется скоростью: все зависит от того, что вы измеряете. В каждом случае возможны дополнительные описания, которые несовместимы, если использовать их одновременно. То же самое происходит с черными дырами. Либо мы описываем объекты, находящиеся за горизонтом, либо мы описываем их в терминах излучения Хокинга снаружи. Удивительно, что в данном случае вызываемая избыточностью описания путаница достигает здесь таких огромных масштабов. Допустим, у нас есть черная дыра с диаметром в миллиард световых лет, тогда имеется расхождение в описании глубиной в миллиард лет. Люди всегда думали, что квантовая неопределенность — это мелкомасштабное явление. Мы узнали, что чем важнее становится влияние квантовой гравитации, тем более крупные, астрономические масштабы вступают в игру.
Самое интересное, что любой эксперимент, какой только можно себе представить, будет обречен на неудачу, если в нем предполагается увидеть обоих слонов. Например, на первый взгляд, есть краткое мгновение, когда обе версии слона находятся над горизонтом и доступны взору одного наблюдателя. Это происходит тогда, когда слон обугливается под действием излучения Хокинга, еще не достигнув горизонта, — скажем, на расстоянии планковской длины от него. Именно в этот момент Сэйф видит, как слон превращается в пепел, а Скруд видит его счастливым, здоровым и невредимым. Причем обе версии слона пока находятся вне черной дыры. Вы наивно думаете, что некий третий наблюдатель — Саккер1 — может попробовать разглядеть сразу обоих слонов. Но что значит увидеть что-либо? Это значит, что часть фотонов отражается от рассматриваемого предмета и попадает на сетчатку в глазу наблюдателя, причем длина волны этих фотонов должна быть меньше, чем сам этот объект. Чем меньше длина волны, тем выше энергия фотонов. Чтобы разглядеть слона на планковском расстоянии от горизонта, Саккеру придется регистрировать фотоны с энергией большей, чем планковская энергия, — а это либо совершенно невозможно, либо в результате этого образуется другая черная дыра, которая утащит слона под свой горизонт. И все равно план Саккера увидеть сразу двух слонов потерпит фиаско.
А что если Сэйф сначала убедится в том, что слон полностью сгорел, а затем прыгнет в черную дыру, чтобы увидеть его вполне здорового двойника? Снова физика воспротивится этому. Для того чтобы получить хотя бы один бит информации о поджаривающемся в излучении Хокинга слоне, Сэйфу приходится подождать, пока испарится половина массы черной дыры. К этому времени, как следует из некоторых простых геометрических соображений, и слон, и Скруд будут гарантированно уничтожены сингулярностью. Нет никакой возможности обхитрить природу. Ни один наблюдатель не может увидеть обоих слонов.
Когда я раздумывала над этим, мне пришло в голову, что упоминание «обоих слонов» вводит в заблуждение. Есть только один слон. «Или», а не «и». Существует только слон Сэйфа или слон Скруда. Точка. Любые разговоры о двух слонах автоматически нарушают квантовый запрет клонирования. То есть нарушают законы физики.
Все это взрывало мне мозг. Подход к космологии «сверху вниз» предполагал, что вы нарушаете закон причинности при попытке посмотреть на Вселенную глазами Бога, и мне остается только гадать, не нарушаются ли при этом заодно и другие законы тоже. «Законы физики не нарушаются только внутри светового конуса?» Теперь принцип дополнительности Сасскинда решительно отвечает «да». Все законы физики, как релятивистские, так и квантовые, остаются справедливыми только в пределах одного светового конуса, всегда конечного и ограниченного.
В течение многих лет мы с отцом говорили о невозможности взирать на мир глазами Бога. В конце концов, урок, данный нам всем Эйнштейном, к тому и сводится, что нельзя говорить о Вселенной, не поинтересовавшись, о чьей точке зрения речь. Для разных систем отсчета и ответ будет разный. «Нет ничего за пределами Вселенной». Из-за того, что скорость света не бесконечна, наблюдатель может видеть только часть Вселенной. До сих пор для нас были важны философские последствия: если никто и никогда не может посмотреть на Вселенную глазами Бога, то из чисто прагматических соображений следует избегать в описании Вселенной каких-либо отсылок к тому, что только этими глазами ее и можно увидеть. Однако принцип дополнительности Сасскинда означал нечто значительно большее: вопрос переносился из области философии в область физики. Попытка описать Вселенную из системы отсчета, в которой можно смотреть сквозь горизонты, неизбежно приведет к ошибочным ответам. Вы насчитаете двух слонов вместо одного. Вы увидите нарушения законов квантовой физики.
Принцип дополнительности Сасскинда четко и недвусмысленно говорит нам: физические законы имеют смысл только в системе отсчета одного наблюдателя.
Эта мысль настолько радикальна, что с большим трудом умещается в моей голове. История со слоном кажется такой странной именно потому, что интуиция подсказывает нам: даже если нельзя находиться одновременно и над горизонтом и под ним, должно все-таки существовать абсолютно истинное знание о том, что происходит со слоном на самом деле. Но «абсолютно истинное» предполагает, что реальность может быть описана с позиции всевидящего Бога. Не существует единого «абсолютно истинного». Существует истина Сэйфа и истина Скруда. Ничего более.
— Это не только новая форма дополнительности, это также новая форма относительности, — сказал мне Сасскинд. — Теория относительности учит нас, что некоторые явления выглядят по-разному в зависимости от движения наблюдателя — например, два движущихся по отношению друг к другу наблюдателя не согласятся относительно одновременности двух событий. Но есть явления, остающиеся инвариантными при переходе от одного наблюдателя к другому. У меня дома сработала фотовспышка. Это инвариантное утверждение. Но сейчас мы говорим о том, что это не так в случае черных дыр. Где находится информация, за горизонтом событий или перед ним, определяется движением наблюдателя. Место, где происходит событие, зависит от наблюдателя — в рамках стандартной теории относительности это было бы неверно. Месторасположение информации становится неоднозначным и зависящим от наблюдателя, если гравитация становится значимым фактором.
Эйнштейн обнаружил, что трехмерное пространство и одно измерение времени зависят от наблюдателя, но зато четырехмерное пространство-время остается инвариантным. Теперь, с горизонтами событий, четырехмерное пространство-время также стало зависимым от наблюдателя. Пространство-время больше не инвариант. Оно не реально.
— Если принцип дополнительности на горизонте событий говорит нам, что пространство-время не реально, то что осталось инвариантным? — спросила я Сасскинда.
— Что осталось инвариантным? — он сделал паузу. — Это хороший вопрос.
<…>
1 От английского sucker — ‘дурачок, простофиля’.